File size: 11,120 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# Created by: Kaede Shiohara
# Yamasaki Lab at The University of Tokyo
# [email protected]
# Copyright (c) 2021
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE

import torch
from torchvision import datasets,transforms,utils
from torch.utils.data import Dataset,IterableDataset
from glob import glob
import os
import numpy as np
from PIL import Image
import random
import cv2
from torch import nn
import sys
import scipy as sp
from skimage.measure import label, regionprops
from training.dataset.library.bi_online_generation import random_get_hull
import albumentations as alb

import warnings
warnings.filterwarnings('ignore')


def alpha_blend(source,target,mask):
	mask_blured = get_blend_mask(mask)
	img_blended=(mask_blured * source + (1 - mask_blured) * target)
	return img_blended,mask_blured


def dynamic_blend(source,target,mask):
	mask_blured = get_blend_mask(mask)
	blend_list=[0.25,0.5,0.75,1,1,1]
	blend_ratio = blend_list[np.random.randint(len(blend_list))]
	mask_blured*=blend_ratio
	img_blended=(mask_blured * source + (1 - mask_blured) * target)
	return img_blended,mask_blured


def get_blend_mask(mask):
	H,W=mask.shape
	size_h=np.random.randint(192,257)
	size_w=np.random.randint(192,257)
	mask=cv2.resize(mask,(size_w,size_h))
	kernel_1=random.randrange(5,26,2)
	kernel_1=(kernel_1,kernel_1)
	kernel_2=random.randrange(5,26,2)
	kernel_2=(kernel_2,kernel_2)
	
	mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
	mask_blured = mask_blured/(mask_blured.max())
	mask_blured[mask_blured<1]=0
	
	mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5,46))
	mask_blured = mask_blured/(mask_blured.max())
	mask_blured = cv2.resize(mask_blured,(W,H))
	return mask_blured.reshape((mask_blured.shape+(1,)))


def get_alpha_blend_mask(mask):
	kernel_list=[(11,11),(9,9),(7,7),(5,5),(3,3)]
	blend_list=[0.25,0.5,0.75]
	kernel_idxs=random.choices(range(len(kernel_list)), k=2)
	blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
	mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
	# print(mask_blured.max())
	mask_blured[mask_blured<mask_blured.max()]=0
	mask_blured[mask_blured>0]=1
	# mask_blured = mask
	mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
	mask_blured = mask_blured/(mask_blured.max())
	return mask_blured.reshape((mask_blured.shape+(1,)))


class RandomDownScale(alb.core.transforms_interface.ImageOnlyTransform):
	def apply(self,img,**params):
		return self.randomdownscale(img)

	def randomdownscale(self,img):
		keep_ratio=True
		keep_input_shape=True
		H,W,C=img.shape
		ratio_list=[2,4]
		r=ratio_list[np.random.randint(len(ratio_list))]
		img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
		if keep_input_shape:
			img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)

		return img_ds
	


def get_boundary(mask, apply_dilation=True, apply_motion_blur=True):
    if len(mask.shape) == 3:
        mask = mask[:, :, 0]

    mask = cv2.GaussianBlur(mask, (3, 3), 0)
    if mask.max() > 1:
        boundary = mask / 255.
    else:
        boundary = mask
    boundary = 4 * boundary * (1. - boundary)

    boundary = boundary * 255
    boundary = random_dilate(boundary)

    if apply_motion_blur:
        boundary = random_motion_blur(boundary)
        boundary = boundary / 255.
    return boundary

def random_dilate(mask, max_kernel_size=5):
    kernel_size = random.randint(1, max_kernel_size)
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    dilated_mask = cv2.dilate(mask, kernel, iterations=1)
    return dilated_mask

def random_motion_blur(mask, max_kernel_size=5):
    kernel_size = random.randint(1, max_kernel_size)
    kernel = np.zeros((kernel_size, kernel_size))
    anchor = random.randint(0, kernel_size - 1)
    kernel[:, anchor] = 1 / kernel_size
    motion_blurred_mask = cv2.filter2D(mask, -1, kernel)
    return motion_blurred_mask



class SBI_API:
	def __init__(self,phase='train',image_size=256):
		
		assert phase == 'train', f"Current SBI API only support train phase, but got {phase}"

		self.image_size=(image_size,image_size)
		self.phase=phase

		self.transforms=self.get_transforms()
		self.source_transforms = self.get_source_transforms()
		self.bob_transforms = self.get_source_transforms_for_bob()


	def __call__(self,img,landmark=None):
		try:  
			assert landmark is not None, "landmark of the facial image should not be None."  
			# img_r,img_f,mask_f=self.self_blending(img.copy(),landmark.copy())  
			
			if random.random() < 1.0:
				# apply sbi
				img_r,img_f,mask_f=self.self_blending(img.copy(),landmark.copy())
			else:
				# apply boundary motion blur (bob)
				img_r,img_f,mask_f=self.bob(img.copy(),landmark.copy())
			
			if self.phase=='train':  
				transformed=self.transforms(image=img_f.astype('uint8'),image1=img_r.astype('uint8'))  
				img_f=transformed['image']  
				img_r=transformed['image1']  
			return img_f,img_r  
		except Exception as e:  
			print(e)  
			return None,None
		
    
	def get_source_transforms(self):
		return alb.Compose([
				alb.Compose([
						alb.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
						alb.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
						alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
					],p=1),
	
				alb.OneOf([
					RandomDownScale(p=1),
					alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
				],p=1),
				
			], p=1.)

		
	def get_transforms(self):
		return alb.Compose([
			
			alb.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
			alb.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
			alb.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
			alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5),
			
		], 
		additional_targets={f'image1': 'image'},
		p=1.)


	def randaffine(self,img,mask):
		f=alb.Affine(
				translate_percent={'x':(-0.03,0.03),'y':(-0.015,0.015)},
				scale=[0.95,1/0.95],
				fit_output=False,
				p=1)
			
		g=alb.ElasticTransform(
				alpha=50,
				sigma=7,
				alpha_affine=0,
				p=1,
			)

		transformed=f(image=img,mask=mask)
		img=transformed['image']
		
		mask=transformed['mask']
		transformed=g(image=img,mask=mask)
		mask=transformed['mask']
		return img,mask
	

	def get_source_transforms_for_bob(self):
		return alb.Compose([
				alb.Compose([
						alb.ImageCompression(quality_lower=40,quality_upper=100,p=1),
					],p=1),

				alb.OneOf([
					RandomDownScale(p=1),
					alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
				],p=1),

			], p=1.)

	def bob(self,img,landmark):
		H,W=len(img),len(img[0])
		if np.random.rand()<0.25:
			landmark=landmark[:68]
		# mask=np.zeros_like(img[:,:,0])
		# cv2.fillConvexPoly(mask, cv2.convexHull(landmark), 1.)
		hull_type = random.choice([0, 1, 2, 3])
		mask=random_get_hull(landmark,img,hull_type)[:,:,0]

		source = img.copy()
		source = self.bob_transforms(image=source.astype(np.uint8))['image']
		source, mask = self.randaffine(source,mask)
		mask = get_blend_mask(mask)

		# get boundary with motion blur
		boundary = get_boundary(mask)

		blend_list = [0.25,0.5,0.75,1,1,1]
		blend_ratio = blend_list[np.random.randint(len(blend_list))]
		boundary *= blend_ratio
		boundary = np.repeat(boundary[:, :, np.newaxis], 3, axis=2)
		img_blended = (boundary * source + (1 - boundary) * img)

		img_blended = img_blended.astype(np.uint8)
		img = img.astype(np.uint8)

		return img,img_blended,boundary.squeeze()

		
	def self_blending(self,img,landmark):
		H,W=len(img),len(img[0])
		if np.random.rand()<0.25:
			landmark=landmark[:68]
		# mask=np.zeros_like(img[:,:,0])
		# cv2.fillConvexPoly(mask, cv2.convexHull(landmark), 1.)
		hull_type = random.choice([0, 1, 2, 3])
		mask=random_get_hull(landmark,img,hull_type)[:,:,0]

		source = img.copy()
		if np.random.rand()<0.5:
			source = self.source_transforms(image=source.astype(np.uint8))['image']
		else:
			img = self.source_transforms(image=img.astype(np.uint8))['image']

		source, mask = self.randaffine(source,mask)

		img_blended,mask=dynamic_blend(source,img,mask)
		img_blended = img_blended.astype(np.uint8)
		img = img.astype(np.uint8)

		return img,img_blended,mask
	

	def reorder_landmark(self,landmark):
		landmark_add=np.zeros((13,2))
		for idx,idx_l in enumerate([77,75,76,68,69,70,71,80,72,73,79,74,78]):
			landmark_add[idx]=landmark[idx_l]
		landmark[68:]=landmark_add
		return landmark


	def hflip(self,img,mask=None,landmark=None,bbox=None):
		H,W=img.shape[:2]
		landmark=landmark.copy()
		if bbox is not None:
			bbox=bbox.copy()

		if landmark is not None:
			landmark_new=np.zeros_like(landmark)

			
			landmark_new[:17]=landmark[:17][::-1]
			landmark_new[17:27]=landmark[17:27][::-1]

			landmark_new[27:31]=landmark[27:31]
			landmark_new[31:36]=landmark[31:36][::-1]

			landmark_new[36:40]=landmark[42:46][::-1]
			landmark_new[40:42]=landmark[46:48][::-1]

			landmark_new[42:46]=landmark[36:40][::-1]
			landmark_new[46:48]=landmark[40:42][::-1]

			landmark_new[48:55]=landmark[48:55][::-1]
			landmark_new[55:60]=landmark[55:60][::-1]

			landmark_new[60:65]=landmark[60:65][::-1]
			landmark_new[65:68]=landmark[65:68][::-1]
			if len(landmark)==68:
				pass
			elif len(landmark)==81:
				landmark_new[68:81]=landmark[68:81][::-1]
			else:
				raise NotImplementedError
			landmark_new[:,0]=W-landmark_new[:,0]
			
		else:
			landmark_new=None

		if bbox is not None:
			bbox_new=np.zeros_like(bbox)
			bbox_new[0,0]=bbox[1,0]
			bbox_new[1,0]=bbox[0,0]
			bbox_new[:,0]=W-bbox_new[:,0]
			bbox_new[:,1]=bbox[:,1].copy()
			if len(bbox)>2:
				bbox_new[2,0]=W-bbox[3,0]
				bbox_new[2,1]=bbox[3,1]
				bbox_new[3,0]=W-bbox[2,0]
				bbox_new[3,1]=bbox[2,1]
				bbox_new[4,0]=W-bbox[4,0]
				bbox_new[4,1]=bbox[4,1]
				bbox_new[5,0]=W-bbox[6,0]
				bbox_new[5,1]=bbox[6,1]
				bbox_new[6,0]=W-bbox[5,0]
				bbox_new[6,1]=bbox[5,1]
		else:
			bbox_new=None

		if mask is not None:
			mask=mask[:,::-1]
		else:
			mask=None
		img=img[:,::-1].copy()
		return img,mask,landmark_new,bbox_new
	

if __name__=='__main__':
	seed=10
	random.seed(seed)
	torch.manual_seed(seed)
	np.random.seed(seed)
	torch.cuda.manual_seed(seed)
	torch.backends.cudnn.deterministic = True
	torch.backends.cudnn.benchmark = False
	api=SBI_API(phase='train',image_size=256)
	
	img_path = 'FaceForensics++/original_sequences/youtube/c23/frames/000/000.png'
	img = cv2.imread(img_path)
	landmark_path = img_path.replace('frames', 'landmarks').replace('png', 'npy')
	landmark = np.load(landmark_path)
	sbi_img, ori_img = api(img, landmark)