File size: 13,667 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# Created by: algohunt
# Microsoft Research & Peking University
# [email protected]
# Copyright (c) 2019
#!/usr/bin/env python3
""" Masks functions for faceswap.py """
import inspect
import logging
import sys
import cv2
import numpy as np
import random
from math import ceil, floor
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
def landmarks_to_bbox(landmarks: np.ndarray) -> np.ndarray:
if not isinstance(landmarks, np.ndarray):
landmarks = np.array(landmarks)
assert landmarks.shape[1] == 2
x0, y0 = np.min(landmarks, axis=0) # x和y轴上分别的最小值, [264,97]
x1, y1 = np.max(landmarks, axis=0) # x和y轴上分别的最小值, [370,236]
bbox = np.array([x0, y0, x1, y1])
return bbox
def mask_from_points(image: np.ndarray, points: np.ndarray) -> np.ndarray:
"""8 (or omitted) - 8-connected line.
4 - 4-connected line.
LINE_AA - antialiased line."""
h, w = image.shape[:2]
points = points.astype(int)
assert points.shape[1] == 2, f"points.shape: {points.shape}"
out = np.zeros((h, w), dtype=np.uint8)
hull = cv2.convexHull(points.astype(int))
cv2.fillConvexPoly(out, hull, 255, lineType=4) # cv2.LINE_AA
return out
def get_available_masks():
""" Return a list of the available masks for cli """
masks = sorted([name for name, obj in inspect.getmembers(sys.modules[__name__])
if inspect.isclass(obj) and name != "Mask"])
masks.append("none")
# logger.debug(masks)
return masks
def landmarks_68_symmetries():
# 68 landmarks symmetry
#
sym_ids = [9, 58, 67, 63, 52, 34, 31, 30, 29, 28]
sym = {
1: 17,
2: 16,
3: 15,
4: 14,
5: 13,
6: 12,
7: 11,
8: 10,
#
51: 53,
50: 54,
49: 55,
60: 56,
59: 57,
#
62: 64,
61: 65,
68: 66,
#
33: 35,
32: 36,
#
37: 46,
38: 45,
39: 44,
40: 43,
41: 48,
42: 47,
#
18: 27,
19: 26,
20: 25,
21: 24,
22: 23,
#
# id
9: 9,
58: 58,
67: 67,
63: 63,
52: 52,
34: 34,
31: 31,
30: 30,
29: 29,
28: 28,
}
return sym, sym_ids
def get_default_mask():
""" Set the default mask for cli """
masks = get_available_masks()
default = "dfl_full"
default = default if default in masks else masks[0]
# logger.debug(default)
return default
class Mask():
""" Parent class for masks
the output mask will be <mask_type>.mask
channels: 1, 3 or 4:
1 - Returns a single channel mask
3 - Returns a 3 channel mask
4 - Returns the original image with the mask in the alpha channel """
def __init__(self, landmarks, face, channels=4, idx = 0):
# logger.info("Initializing %s: (face_shape: %s, channels: %s, landmarks: %s)",
# self.__class__.__name__, face.shape, channels, landmarks)
self.landmarks = landmarks
self.face = face
self.channels = channels
self.cols = 4 # grid mask
self.rows = 4 # grid mask
self.idx = idx # grid mask
mask = self.build_mask()
self.mask = self.merge_mask(mask)
# logger.info("Initialized %s", self.__class__.__name__)
def build_mask(self):
""" Override to build the mask """
raise NotImplementedError
def merge_mask(self, mask):
""" Return the mask in requested shape """
# logger.info("mask_shape: %s", mask.shape)
assert self.channels in (1, 3, 4), "Channels should be 1, 3 or 4"
assert mask.shape[2] == 1 and mask.ndim == 3, "Input mask be 3 dimensions with 1 channel"
if self.channels == 3:
retval = np.tile(mask, 3)
elif self.channels == 4:
retval = np.concatenate((self.face, mask), -1)
else:
retval = mask
# logger.info("Final mask shape: %s", retval.shape)
return retval
class dfl_full(Mask): # pylint: disable=invalid-name
""" DFL facial mask """
def build_mask(self):
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
nose_ridge = (self.landmarks[27:31], self.landmarks[33:34])
jaw = (self.landmarks[0:17],
self.landmarks[48:68],
self.landmarks[0:1],
self.landmarks[8:9],
self.landmarks[16:17])
eyes = (self.landmarks[17:27],
self.landmarks[0:1],
self.landmarks[27:28],
self.landmarks[16:17],
self.landmarks[33:34])
parts = [jaw, nose_ridge, eyes]
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
return mask
class components(Mask): # pylint: disable=invalid-name
""" Component model mask """
def build_mask(self):
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
r_jaw = (self.landmarks[0:9], self.landmarks[17:18])
l_jaw = (self.landmarks[8:17], self.landmarks[26:27])
r_cheek = (self.landmarks[17:20], self.landmarks[8:9])
l_cheek = (self.landmarks[24:27], self.landmarks[8:9])
nose_ridge = (self.landmarks[19:25], self.landmarks[8:9],)
r_eye = (self.landmarks[17:22],
self.landmarks[27:28],
self.landmarks[31:36],
self.landmarks[8:9])
l_eye = (self.landmarks[22:27],
self.landmarks[27:28],
self.landmarks[31:36],
self.landmarks[8:9])
nose = (self.landmarks[27:31], self.landmarks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
# ---change 0531 random select parts ---
# r_face = (self.landmarks[0:9], self.landmarks[17:18],self.landmarks[17:20], self.landmarks[8:9])
# l_face = (self.landmarks[8:17], self.landmarks[26:27],self.landmarks[24:27], self.landmarks[8:9])
# nose_final = (self.landmarks[19:25], self.landmarks[8:9],self.landmarks[27:31], self.landmarks[31:36])
# parts = [r_face,l_face,nose_final,r_eye,l_eye]
# num_to_select = random.randint(1, len(parts))
# parts = random.sample(parts, num_to_select)
# print(len(parts), parts[0])
# ---change 0531 random select parts ---
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
return mask
class extended(Mask): # pylint: disable=invalid-name
""" Extended mask
Based on components mask. Attempts to extend the eyebrow points up the forehead
"""
def build_mask(self):
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
landmarks = self.landmarks.copy()
# mid points between the side of face and eye point
ml_pnt = (landmarks[36] + landmarks[0]) // 2
mr_pnt = (landmarks[16] + landmarks[45]) // 2
# mid points between the mid points and eye
ql_pnt = (landmarks[36] + ml_pnt) // 2
qr_pnt = (landmarks[45] + mr_pnt) // 2
# Top of the eye arrays
bot_l = np.array((ql_pnt, landmarks[36], landmarks[37], landmarks[38], landmarks[39]))
bot_r = np.array((landmarks[42], landmarks[43], landmarks[44], landmarks[45], qr_pnt))
# Eyebrow arrays
top_l = landmarks[17:22]
top_r = landmarks[22:27]
# Adjust eyebrow arrays
landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
landmarks[22:27] = top_r + ((top_r - bot_r) // 2)
r_jaw = (landmarks[0:9], landmarks[17:18])
l_jaw = (landmarks[8:17], landmarks[26:27])
r_cheek = (landmarks[17:20], landmarks[8:9])
l_cheek = (landmarks[24:27], landmarks[8:9])
nose_ridge = (landmarks[19:25], landmarks[8:9],)
r_eye = (landmarks[17:22], landmarks[27:28], landmarks[31:36], landmarks[8:9])
l_eye = (landmarks[22:27], landmarks[27:28], landmarks[31:36], landmarks[8:9])
nose = (landmarks[27:31], landmarks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.) # pylint: disable=no-member
return mask
class facehull(Mask): # pylint: disable=invalid-name
""" Basic face hull mask """
def build_mask(self):
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
hull = cv2.convexHull( # pylint: disable=no-member
np.array(self.landmarks).reshape((-1, 2)))
cv2.fillConvexPoly(mask, hull, 255.0, lineType=cv2.LINE_AA) # pylint: disable=no-member
return mask
# mask = np.zeros(img.shape[0:2] + (1, ), dtype=np.float32)
# hull = cv2.convexHull(np.array(landmark).reshape((-1, 2)))
class facehull2(Mask): # pylint: disable=invalid-name
""" Basic face hull mask """
def build_mask(self):
mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.uint8)
hull = cv2.convexHull( # pylint: disable=no-member
np.array(self.landmarks).reshape((-1, 2)))
cv2.fillConvexPoly(mask, hull, 1.0, lineType=cv2.LINE_AA)
return mask
class gridMasking(Mask):
def build_mask(self):
h, w = self.face.shape[:2]
landmarks = self.landmarks[:68]
# if idx is None:
# idx = np.random.randint(0, self.total)
r, c = divmod(self.idx, self.cols) # 获得除数和余数,即这个idx对应第r行第c列
# pixel related
xmin, ymin, xmax, ymax = landmarks_to_bbox(landmarks)
dx = ceil((xmax - xmin) / self.cols)
dy = ceil((ymax - ymin) / self.rows)
mask = np.zeros((h, w), dtype=np.uint8)
# fill the cell mask
x0, y0 = floor(xmin + dx * c), floor(ymin + dy * r)
x1, y1 = floor(x0 + dx), floor(y0 + dy)
cv2.rectangle(mask, (x0, y0), (x1, y1), 255, -1)
# merge the cell mask with the convex hull
ch = mask_from_points(self.face, landmarks)
# ch = cv2.cvtColor(ch, cv2.COLOR_BGR2GRAY)
# mask = (mask & ch) / 255.0
mask = cv2.bitwise_and(mask, mask, mask=ch)
mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
# cv2.bitwise_or(img, d_3c_i)
return mask
class MeshgridMasking(Mask):
areas = [
[1, 2, 3, 4, 5, 6, 7, 49, 32, 40, 41, 42, 37, 18],
[37, 38, 39, 40, 41, 42], # left eye
[18, 19, 20, 21, 22, 28, 40, 39, 38, 37],
[28, 29, 30, 31, 32, 40],
]
areas_asym = [
[20, 21, 22, 28, 23, 24, 25], # old [22, 23, 28],
[31, 32, 33, 34, 35, 36],
[32, 33, 34, 35, 36, 55, 54, 53, 52, 51, 50, 49],
[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
[7, 8, 9, 10, 11, 55, 56, 57, 58, 59, 60, 49],
]
def init(self, **kwargs):
# super().__init__(**kwargs)
sym, _ = landmarks_68_symmetries()
# construct list of points paths
paths = []
paths += self.areas_asym # asymmetrical areas
paths += self.areas # left
paths += [[sym[ld68_id] for ld68_id in area] for area in self.areas] # right
assert len(paths) == self.total
self.paths = paths
@property
def total(self) -> int:
total = len(self.areas_asym) + len(self.areas) * 2
return total
def transform_landmarks(self, landmarks):
"""Transform landmarks to extend the eyebrow points up the forehead"""
new_landmarks = landmarks.copy()
# mid points between the side of face and eye point
ml_pnt = (new_landmarks[36] + new_landmarks[0]) // 2
mr_pnt = (new_landmarks[16] + new_landmarks[45]) // 2
# mid points between the mid points and eye
ql_pnt = (new_landmarks[36] + ml_pnt) // 2
qr_pnt = (new_landmarks[45] + mr_pnt) // 2
# Top of the eye arrays
bot_l = np.array(
(
ql_pnt,
new_landmarks[36],
new_landmarks[37],
new_landmarks[38],
new_landmarks[39],
)
)
bot_r = np.array(
(
new_landmarks[42],
new_landmarks[43],
new_landmarks[44],
new_landmarks[45],
qr_pnt,
)
)
# Eyebrow arrays
top_l = new_landmarks[17:22]
top_r = new_landmarks[22:27]
# Adjust eyebrow arrays
new_landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
new_landmarks[22:27] = top_r + ((top_r - bot_r) // 2)
return new_landmarks
def build_mask(self) -> np.ndarray:
self.init()
h, w = self.face.shape[:2]
path = self.paths[self.idx]
new_landmarks = self.transform_landmarks(self.landmarks)
points = [new_landmarks[ld68_id - 1] for ld68_id in path]
points = np.array(points, dtype=np.int32)
# cv2.fillConvexPoly(out, points, 255, lineType=4)
mask = np.zeros((h, w), dtype=np.uint8)
cv2.fillPoly(mask, [points], 255)
mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
return mask |