File size: 13,667 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# Created by: algohunt
# Microsoft Research & Peking University 
# [email protected]
# Copyright (c) 2019

#!/usr/bin/env python3
""" Masks functions for faceswap.py """

import inspect
import logging
import sys

import cv2
import numpy as np
import random
from math import ceil, floor
logger = logging.getLogger(__name__)  # pylint: disable=invalid-name

def landmarks_to_bbox(landmarks: np.ndarray) -> np.ndarray:
    if not isinstance(landmarks, np.ndarray):
        landmarks = np.array(landmarks)
    assert landmarks.shape[1] == 2
    x0, y0 = np.min(landmarks, axis=0) # x和y轴上分别的最小值, [264,97]
    x1, y1 = np.max(landmarks, axis=0) # x和y轴上分别的最小值, [370,236]
    bbox = np.array([x0, y0, x1, y1])
    return bbox 

def mask_from_points(image: np.ndarray, points: np.ndarray) -> np.ndarray:
    """8 (or omitted) - 8-connected line.
          4 - 4-connected line.
    LINE_AA - antialiased line."""
    h, w = image.shape[:2]
    points = points.astype(int)
    assert points.shape[1] == 2, f"points.shape: {points.shape}"
    out = np.zeros((h, w), dtype=np.uint8)
    hull = cv2.convexHull(points.astype(int))
    cv2.fillConvexPoly(out, hull, 255, lineType=4)  # cv2.LINE_AA
    return out

def get_available_masks():
    """ Return a list of the available masks for cli """
    masks = sorted([name for name, obj in inspect.getmembers(sys.modules[__name__])
                    if inspect.isclass(obj) and name != "Mask"])
    masks.append("none")
    # logger.debug(masks)
    return masks

def landmarks_68_symmetries():
    # 68 landmarks symmetry
    #
    sym_ids = [9, 58, 67, 63, 52, 34, 31, 30, 29, 28]
    sym = {
        1: 17,
        2: 16,
        3: 15,
        4: 14,
        5: 13,
        6: 12,
        7: 11,
        8: 10,
        #
        51: 53,
        50: 54,
        49: 55,
        60: 56,
        59: 57,
        #
        62: 64,
        61: 65,
        68: 66,
        #
        33: 35,
        32: 36,
        #
        37: 46,
        38: 45,
        39: 44,
        40: 43,
        41: 48,
        42: 47,
        #
        18: 27,
        19: 26,
        20: 25,
        21: 24,
        22: 23,
        #
        # id
        9: 9,
        58: 58,
        67: 67,
        63: 63,
        52: 52,
        34: 34,
        31: 31,
        30: 30,
        29: 29,
        28: 28,
    }
    return sym, sym_ids



def get_default_mask():
    """ Set the default mask for cli """
    masks = get_available_masks()
    default = "dfl_full"
    default = default if default in masks else masks[0]
    # logger.debug(default)
    return default


class Mask():
    """ Parent class for masks
        the output mask will be <mask_type>.mask
        channels: 1, 3 or 4:
                    1 - Returns a single channel mask
                    3 - Returns a 3 channel mask
                    4 - Returns the original image with the mask in the alpha channel """

    def __init__(self, landmarks, face, channels=4, idx = 0):
        # logger.info("Initializing %s: (face_shape: %s, channels: %s, landmarks: %s)",
        #              self.__class__.__name__, face.shape, channels, landmarks)
        self.landmarks = landmarks
        self.face = face
        self.channels = channels
        self.cols = 4 # grid mask
        self.rows = 4 # grid mask
        self.idx = idx # grid mask

        mask = self.build_mask()
        self.mask = self.merge_mask(mask)
        # logger.info("Initialized %s", self.__class__.__name__)

    def build_mask(self):
        """ Override to build the mask """
        raise NotImplementedError

    def merge_mask(self, mask):
        """ Return the mask in requested shape """
        # logger.info("mask_shape: %s", mask.shape)
        assert self.channels in (1, 3, 4), "Channels should be 1, 3 or 4"
        assert mask.shape[2] == 1 and mask.ndim == 3, "Input mask be 3 dimensions with 1 channel"

        if self.channels == 3:
            retval = np.tile(mask, 3)
        elif self.channels == 4:
            retval = np.concatenate((self.face, mask), -1)
        else:
            retval = mask

        # logger.info("Final mask shape: %s", retval.shape)
        return retval


class dfl_full(Mask):  # pylint: disable=invalid-name
    """ DFL facial mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)

        nose_ridge = (self.landmarks[27:31], self.landmarks[33:34])
        jaw = (self.landmarks[0:17],
               self.landmarks[48:68],
               self.landmarks[0:1],
               self.landmarks[8:9],
               self.landmarks[16:17])
        eyes = (self.landmarks[17:27],
                self.landmarks[0:1],
                self.landmarks[27:28],
                self.landmarks[16:17],
                self.landmarks[33:34])
        parts = [jaw, nose_ridge, eyes]

        for item in parts:
            merged = np.concatenate(item)
            cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.)  # pylint: disable=no-member
        return mask


class components(Mask):  # pylint: disable=invalid-name
    """ Component model mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)

        r_jaw = (self.landmarks[0:9], self.landmarks[17:18])
        l_jaw = (self.landmarks[8:17], self.landmarks[26:27])
        r_cheek = (self.landmarks[17:20], self.landmarks[8:9])
        l_cheek = (self.landmarks[24:27], self.landmarks[8:9])
        nose_ridge = (self.landmarks[19:25], self.landmarks[8:9],)
        r_eye = (self.landmarks[17:22],
                 self.landmarks[27:28],
                 self.landmarks[31:36],
                 self.landmarks[8:9])
        l_eye = (self.landmarks[22:27],
                 self.landmarks[27:28],
                 self.landmarks[31:36],
                 self.landmarks[8:9])
        nose = (self.landmarks[27:31], self.landmarks[31:36])
        parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]

        # ---change 0531 random select parts ---
        # r_face = (self.landmarks[0:9], self.landmarks[17:18],self.landmarks[17:20], self.landmarks[8:9])
        # l_face = (self.landmarks[8:17], self.landmarks[26:27],self.landmarks[24:27], self.landmarks[8:9])
        # nose_final = (self.landmarks[19:25], self.landmarks[8:9],self.landmarks[27:31], self.landmarks[31:36])
        # parts = [r_face,l_face,nose_final,r_eye,l_eye]
        # num_to_select = random.randint(1, len(parts))
        # parts = random.sample(parts, num_to_select)
        # print(len(parts), parts[0])
        # ---change 0531 random select parts ---

        for item in parts:
            merged = np.concatenate(item)
            cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.)  # pylint: disable=no-member
        return mask


class extended(Mask):  # pylint: disable=invalid-name
    """ Extended mask
        Based on components mask. Attempts to extend the eyebrow points up the forehead
    """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)

        landmarks = self.landmarks.copy()
        # mid points between the side of face and eye point
        ml_pnt = (landmarks[36] + landmarks[0]) // 2
        mr_pnt = (landmarks[16] + landmarks[45]) // 2

        # mid points between the mid points and eye
        ql_pnt = (landmarks[36] + ml_pnt) // 2
        qr_pnt = (landmarks[45] + mr_pnt) // 2

        # Top of the eye arrays
        bot_l = np.array((ql_pnt, landmarks[36], landmarks[37], landmarks[38], landmarks[39]))
        bot_r = np.array((landmarks[42], landmarks[43], landmarks[44], landmarks[45], qr_pnt))

        # Eyebrow arrays
        top_l = landmarks[17:22]
        top_r = landmarks[22:27]

        # Adjust eyebrow arrays
        landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
        landmarks[22:27] = top_r + ((top_r - bot_r) // 2)

        r_jaw = (landmarks[0:9], landmarks[17:18])
        l_jaw = (landmarks[8:17], landmarks[26:27])
        r_cheek = (landmarks[17:20], landmarks[8:9])
        l_cheek = (landmarks[24:27], landmarks[8:9])
        nose_ridge = (landmarks[19:25], landmarks[8:9],)
        r_eye = (landmarks[17:22], landmarks[27:28], landmarks[31:36], landmarks[8:9])
        l_eye = (landmarks[22:27], landmarks[27:28], landmarks[31:36], landmarks[8:9])
        nose = (landmarks[27:31], landmarks[31:36])
        parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]

        for item in parts:
            merged = np.concatenate(item)
            cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.)  # pylint: disable=no-member
        return mask


class facehull(Mask):  # pylint: disable=invalid-name
    """ Basic face hull mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
        hull = cv2.convexHull(  # pylint: disable=no-member
            np.array(self.landmarks).reshape((-1, 2)))
        cv2.fillConvexPoly(mask, hull, 255.0, lineType=cv2.LINE_AA)  # pylint: disable=no-member
        return mask
        # mask = np.zeros(img.shape[0:2] + (1, ), dtype=np.float32)
        # hull = cv2.convexHull(np.array(landmark).reshape((-1, 2)))

class facehull2(Mask):  # pylint: disable=invalid-name
    """ Basic face hull mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.uint8)
        hull = cv2.convexHull(  # pylint: disable=no-member
            np.array(self.landmarks).reshape((-1, 2)))
        cv2.fillConvexPoly(mask, hull, 1.0, lineType=cv2.LINE_AA)
        return mask



class gridMasking(Mask):

    def build_mask(self):
        h, w = self.face.shape[:2]
        landmarks = self.landmarks[:68]
        # if idx is None:
        #    idx = np.random.randint(0, self.total)
        r, c = divmod(self.idx, self.cols) # 获得除数和余数,即这个idx对应第r行第c列

        # pixel related
        xmin, ymin, xmax, ymax = landmarks_to_bbox(landmarks)
        dx = ceil((xmax - xmin) / self.cols)
        dy = ceil((ymax - ymin) / self.rows)

        mask = np.zeros((h, w), dtype=np.uint8)

        # fill the cell mask
        x0, y0 = floor(xmin + dx * c), floor(ymin + dy * r)
        x1, y1 = floor(x0 + dx), floor(y0 + dy)
        cv2.rectangle(mask, (x0, y0), (x1, y1), 255, -1)

        # merge the cell mask with the convex hull
        ch = mask_from_points(self.face, landmarks)
        # ch = cv2.cvtColor(ch, cv2.COLOR_BGR2GRAY)
        # mask = (mask & ch) / 255.0
        mask = cv2.bitwise_and(mask, mask, mask=ch)
        mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
        # cv2.bitwise_or(img, d_3c_i)

        return mask

class MeshgridMasking(Mask):
    areas = [
        [1, 2, 3, 4, 5, 6, 7, 49, 32, 40, 41, 42, 37, 18],
        [37, 38, 39, 40, 41, 42],  # left eye
        [18, 19, 20, 21, 22, 28, 40, 39, 38, 37],
        [28, 29, 30, 31, 32, 40],
    ]
    areas_asym = [
        [20, 21, 22, 28, 23, 24, 25],  # old [22, 23, 28],
        [31, 32, 33, 34, 35, 36],
        [32, 33, 34, 35, 36, 55, 54, 53, 52, 51, 50, 49],
        [49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
        [7, 8, 9, 10, 11, 55, 56, 57, 58, 59, 60, 49],
    ]

    def init(self, **kwargs):
        # super().__init__(**kwargs)

        sym, _ = landmarks_68_symmetries()
        # construct list of points paths
        paths = []
        paths += self.areas_asym  # asymmetrical areas
        paths += self.areas  # left
        paths += [[sym[ld68_id] for ld68_id in area] for area in self.areas]  # right
        assert len(paths) == self.total
        self.paths = paths

    @property
    def total(self) -> int:
        total = len(self.areas_asym) + len(self.areas) * 2
        return total

    def transform_landmarks(self, landmarks):
        """Transform landmarks to extend the eyebrow points up the forehead"""
        new_landmarks = landmarks.copy()
        # mid points between the side of face and eye point
        ml_pnt = (new_landmarks[36] + new_landmarks[0]) // 2
        mr_pnt = (new_landmarks[16] + new_landmarks[45]) // 2

        # mid points between the mid points and eye
        ql_pnt = (new_landmarks[36] + ml_pnt) // 2
        qr_pnt = (new_landmarks[45] + mr_pnt) // 2

        # Top of the eye arrays
        bot_l = np.array(
            (
                ql_pnt,
                new_landmarks[36],
                new_landmarks[37],
                new_landmarks[38],
                new_landmarks[39],
            )
        )
        bot_r = np.array(
            (
                new_landmarks[42],
                new_landmarks[43],
                new_landmarks[44],
                new_landmarks[45],
                qr_pnt,
            )
        )

        # Eyebrow arrays
        top_l = new_landmarks[17:22]
        top_r = new_landmarks[22:27]

        # Adjust eyebrow arrays
        new_landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
        new_landmarks[22:27] = top_r + ((top_r - bot_r) // 2)

        return new_landmarks

    def build_mask(self) -> np.ndarray:
        self.init()
        h, w = self.face.shape[:2]

        path = self.paths[self.idx]
        new_landmarks = self.transform_landmarks(self.landmarks)
        points = [new_landmarks[ld68_id - 1] for ld68_id in path]
        points = np.array(points, dtype=np.int32)

        # cv2.fillConvexPoly(out, points, 255, lineType=4)
        mask = np.zeros((h, w), dtype=np.uint8)
        cv2.fillPoly(mask, [points], 255)
        mask = mask.reshape([mask.shape[0],mask.shape[1], 1])
        return mask