File size: 4,763 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from enum import Enum
from functools import reduce

import cv2
import numpy as np
from scipy.ndimage import binary_dilation

from .DeepFakeMask import Mask


def dist(a, b):
    x1, y1 = a
    x2, y2 = b
    return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
    # return np.linalg.norm(a-b)


def get_five_key(landmarks_68):
    # get the five key points by using the landmarks
    leye_center = (landmarks_68[36] + landmarks_68[39]) * 0.5
    reye_center = (landmarks_68[42] + landmarks_68[45]) * 0.5
    nose = landmarks_68[33]
    lmouth = landmarks_68[48]
    rmouth = landmarks_68[54]
    leye_left = landmarks_68[36]
    leye_right = landmarks_68[39]
    reye_left = landmarks_68[42]
    reye_right = landmarks_68[45]
    out = [
        tuple(x.astype("int32"))
        for x in [
            leye_center,
            reye_center,
            nose,
            lmouth,
            rmouth,
            leye_left,
            leye_right,
            reye_left,
            reye_right,
        ]
    ]
    return out


def remove_eyes(image, landmarks, opt):
    ##l: left eye; r: right eye, b: both eye
    if opt == "l":
        (x1, y1), (x2, y2) = landmarks[5:7]
    elif opt == "r":
        (x1, y1), (x2, y2) = landmarks[7:9]
    elif opt == "b":
        (x1, y1), (x2, y2) = landmarks[:2]
    else:
        print("wrong region")
    mask = np.zeros_like(image[..., 0])
    line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 4)
    if opt != "b":
        dilation *= 4
    line = binary_dilation(line, iterations=dilation)
    return line


def remove_nose(image, landmarks):
    (x1, y1), (x2, y2) = landmarks[:2]
    x3, y3 = landmarks[2]
    mask = np.zeros_like(image[..., 0])
    x4 = int((x1 + x2) / 2)
    y4 = int((y1 + y2) / 2)
    line = cv2.line(mask, (x3, y3), (x4, y4), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 4)
    line = binary_dilation(line, iterations=dilation)
    return line


def remove_mouth(image, landmarks):
    (x1, y1), (x2, y2) = landmarks[3:5]
    mask = np.zeros_like(image[..., 0])
    line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 3)
    line = binary_dilation(line, iterations=dilation)
    return line


class SladdRegion(Enum):
    left_eye = 0
    right_eye = 1
    nose = 2
    mouth = 3
    # composition
    both_eyes = left_eye + right_eye  # 4


class SladdMasking(Mask):

    # [0, 1, 2, 3, (0, 1), (0, 2), (1, 2), (2, 3), (0, 1, 2), (0, 1, 2, 3)]
    # left-eye, right-eye, nose, mouth, ...
    ALL_REGIONS = [
        SladdRegion.left_eye,
        SladdRegion.right_eye,
        SladdRegion.nose,
        SladdRegion.mouth,
    ]
    REGIONS = [
        [SladdRegion.left_eye],
        [SladdRegion.right_eye],
        [SladdRegion.nose],
        [SladdRegion.mouth],
        [SladdRegion.left_eye, SladdRegion.right_eye],
        [SladdRegion.left_eye, SladdRegion.nose],
        [SladdRegion.right_eye, SladdRegion.nose],
        [SladdRegion.nose, SladdRegion.mouth],
        [SladdRegion.left_eye, SladdRegion.right_eye, SladdRegion.nose],
        ALL_REGIONS,
    ]

    def init(self, compose: bool = False, single: bool = True, **kwargs):
        # super().__init__(**kwargs)
        self.compose = compose
        if compose:
            self.regions = SladdMasking.REGIONS
        else:
            self.regions = [reg for reg in SladdMasking.REGIONS if len(reg) == 1]
        if single:
            self.regions = [self.ALL_REGIONS]

    @property
    def total(self) -> int:
        return len(self.regions)

    @staticmethod
    def parse(img, reg, landmarks) -> np.ndarray:
        five_key = get_five_key(landmarks)
        if reg is SladdRegion.left_eye:
            mask = remove_eyes(img, five_key, "l")
        elif reg is SladdRegion.right_eye:
            mask = remove_eyes(img, five_key, "r")
        elif reg is SladdRegion.nose:
            mask = remove_nose(img, five_key)
        elif reg is SladdRegion.mouth:
            mask = remove_mouth(img, five_key)
        else:
            raise ValueError("Invalid region")
        # elif reg == SladdRegion4:
        #    mask = remove_eyes(img, five_key, "b")
        return mask

    def build_mask(self) -> np.ndarray:
        self.init()
        h, w = self.face.shape[:2]
        # print(len(self.regions))
        regs = [self.regions[0][self.idx]]
        # if isinstance(reg, int):
        #    mask = parse(img, reg, landmarks)
        masks = [SladdMasking.parse(self.face, reg, self.landmarks) for reg in regs]
        mask = reduce(np.maximum, masks)
        mask = mask.reshape([mask.shape[0],mask.shape[1], 1])

        return mask