File size: 14,501 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
'''
Create face mask and face boundary mask according to face landmarks,
so as to supervize the activation of Conv layer.
'''
import os
import numpy as np
import cv2
import dlib
import random
import argparse
from tqdm import tqdm
import time
from skimage import transform as trans
# from color_transfer import color_transfer
from .warp import gen_warp_params, warp_by_params, warp_mask
def crop_img_bbox(img, bbox, res, scale=1.3):
x, y, w, h = bbox
left, right = x, x+w
top, bottom = y, y+h
H, W, C = img.shape
cx, cy = (left+right)//2, (top+bottom)//2
w, h = (right-left)//2, (bottom-top)//2
x1 = max(0, int(cx-w*scale))
x2 = min(W, int(cx+w*scale))
y1 = max(0, int(cy-h*scale))
y2 = min(H, int(cy+h*scale))
roi = img[y1:y2, x1:x2]
roi = cv2.resize(roi, (res, res))
return roi
def get_mask_center(mask):
l, t, w, h = cv2.boundingRect(mask[:, :, 0:1].astype(np.uint8))
center = int(l+w/2), int(t+h/2)
return center
def get_5_keypoint(shape):
def get_point(idx):
# return [shape.part(idx).x, shape.part(idx).y]
return shape[idx]
def center(pt1, pt2):
return [(pt1[0]+pt2[0])//2, (pt1[1]+pt2[1])//2]
leye = np.array(center(get_point(36), get_point(39)),
dtype=int).reshape(-1, 2)
reye = np.array(center(get_point(45), get_point(42)),
dtype=int).reshape(-1, 2)
nose = np.array(get_point(30), dtype=int).reshape(-1, 2)
lmouth = np.array(get_point(48),
dtype=int).reshape(-1, 2)
rmouth = np.array(get_point(54),
dtype=int).reshape(-1, 2)
pts = np.concatenate([leye, reye, nose, lmouth, rmouth], axis=0)
return pts
def get_boundary(mask):
if len(mask.shape) == 3:
mask = mask[:, :, 0]
mask = cv2.GaussianBlur(mask, (3, 3), 0)
boundary = mask / 255.
boundary = 4*boundary*(1.-boundary)
return boundary
# def get_boundary(mask):
# if len(mask.shape) == 3:
# mask = mask[:, :, 0]
# mask = cv2.GaussianBlur(mask, (3, 3), 0)
# mask = mask.astype(np.uint8)
# # Dilation and Erosion to find the boundary
# dilated = cv2.dilate(mask, None, iterations=1)
# boundary = cv2.subtract(dilated, mask)
# # normalize the boundary to have values between 0 and 1
# boundary = boundary / 255.
# return boundary
def blur_mask(mask):
blur_k = 2*np.random.randint(1, 10)-1
#kernel = np.ones((blur_k+1, blur_k+1), np.uint8)
#mask = cv2.erode(mask, kernel)
mask = cv2.GaussianBlur(mask, (blur_k, blur_k), 0)
return mask
def random_deform(pt, tgt, scale=0.3):
x1, y1 = pt
x2, y2 = tgt
x = x1+(x2-x1)*np.random.rand()*scale
y = y1+(y2-y1)*np.random.rand()*scale
#print('before:', pt, ' after:', [int(x), int(y)])
return [int(x), int(y)]
def get_specific_mask(img, shape, mtype='mouth', random_side=False):
if mtype == 'eyes':
landmarks = shape[42:45] if random.choice([True, False]) else shape[36:39]
elif mtype == 'nose':
landmarks = shape[27:35]
elif mtype == 'mouth':
landmarks = shape[48:60]
elif mtype == 'eyebrows':
landmarks = shape[22:26] if random.choice([True, False]) else shape[17:21]
else:
raise ValueError(f"Invalid mtype. Choose from 'eyes', 'nose', 'mouth', or 'eyebrows', but got {mtype}")
# find convex hull
hull = cv2.convexHull(landmarks)
hull = hull.astype(int)
# mask
hull_mask = np.zeros_like(img)
cv2.fillPoly(hull_mask, [hull], (255, 255, 255))
mask = hull_mask
return mask
def get_hull_mask(img, shape, mtype='hull'):
if mtype == 'normal-hull':
landmarks = np.array(shape)
# find convex hull
hull = cv2.convexHull(landmarks)
hull = hull.astype(int)
# full face mask
hull_mask = np.zeros_like(img)
cv2.fillPoly(hull_mask, [hull], (255, 255, 255))
mask = hull_mask
elif mtype == 'inner-hull':
landmarks = shape[17:]
landmarks = np.array(landmarks)
# find convex hull
hull = cv2.convexHull(landmarks)
hull = hull.astype(int)
# full face mask
hull_mask = np.zeros_like(img)
cv2.fillPoly(hull_mask, [hull], (255, 255, 255))
mask = hull_mask
elif mtype == 'inner-hull-no-eyebrow':
landmarks = shape[27:]
landmarks = np.array(landmarks)
# find convex hull
hull = cv2.convexHull(landmarks)
hull = hull.astype(int)
# full face mask
hull_mask = np.zeros_like(img)
cv2.fillPoly(hull_mask, [hull], (255, 255, 255))
mask = hull_mask
elif mtype == 'mouth-hull':
landmarks = shape[2:15]
#landmarks.append(shape[29])
landmarks = np.concatenate([landmarks, shape[29].reshape(1, -1)], axis=0)
# find convex hull
hull = cv2.convexHull(landmarks)
hull = hull.astype(int)
# full face mask
hull_mask = np.zeros_like(img)
cv2.fillPoly(hull_mask, [hull], (255, 255, 255))
# kernel = np.ones((2, 2), np.uint8)
# c_mask = cv2.dilate(hull_mask, kernel, iterations=1)
mask = hull_mask
elif mtype == 'whole-hull':
face_height = shape[9][1] - shape[22][1]
landmarks = []
for i in range(27):
lmk = shape[i]
if i >= 5 and i <= 11:
x, y = lmk[0], lmk[1]
lmk = [x, max(0, y+15)]
# lift the eyebrows to get a larger landmark convex hull
if i >= 18 and i <= 27:
x, y = lmk[0], lmk[1]
lmk = [x, max(0, y-face_height//4)]
landmarks.append(lmk)
# find convex hull
landmarks = np.array(landmarks, dtype=np.int32)
hull = cv2.convexHull(landmarks)
hull = np.reshape(hull, (1, -1, 2))
# full face mask
hull_mask = np.zeros_like(img)
cv2.fillPoly(hull_mask, [hull], (255, 255, 255))
# kernel = np.ones((2, 2), np.uint8)
# c_mask = cv2.dilate(hull_mask, kernel, iterations=1)
mask = hull_mask
'''
elif mtype == 'rect':
cnt = []
for idx in [5, 11, 17, 26]:
cnt.append(shape[idx])
x, y, w, h = cv2.boundingRect(np.array(cnt))
rect_mask = np.zeros_like(img)
cv2.rectangle(rect_mask, (x, y), (x+w, y+h),
(255, 255, 255), cv2.FILLED)
mask = rect_mask
'''
return mask
def get_mask(shape, img, std=20, deform=True, restrict_mask=None):
mask_type = [
'normal-hull',
'inner-hull',
'inner-hull-no-eyebrow',
'mouth-hull',
'whole-hull'
]
max_mask = get_hull_mask(img, shape, 'whole-hull')
if deform:
mtype = mask_type[np.random.randint(len(mask_type))]
if mtype == 'rect':
mask = get_hull_mask(img, shape, 'inner-hull-no-eyebrow')
x, y, w, h = cv2.boundingRect(mask[:,:,0])
for i in range(y, y+h):
for j in range(x, x+w):
for k in range(mask.shape[2]):
mask[i, j, k] = 255
else:
mask = get_hull_mask(img, shape, mtype)
# random deform
if np.random.rand() < 0.9:
mask = warp_mask(mask, std=std)
# # random erode/dilate
# prob = np.random.rand()
# if prob < 0.3:
# erode_k = 2*np.random.randint(1, 10)+1
# kernel = np.ones((erode_k, erode_k), np.uint8)
# mask = cv2.erode(mask, kernel)
# elif prob < 0.6:
# erode_k = 2*np.random.randint(1, 10)+1
# kernel = np.ones((erode_k, erode_k), np.uint8)
# mask = cv2.dilate(mask, kernel)
else:
mask = max_mask.copy()
if restrict_mask is not None:
mask = mask*(restrict_mask//255)
# restrict mask range
mask = mask *(max_mask//255)
# random blur
if deform and np.random.rand() < 0.9:
mask = blur_mask(mask)
return mask[:,:,0]
def mask_postprocess(mask):
# random erode/dilate
prob = np.random.rand()
if prob < 0.3:
erode_k = 2*np.random.randint(1, 10)+1
kernel = np.ones((erode_k, erode_k), np.uint8)
mask = cv2.erode(mask, kernel)
elif prob < 0.6:
erode_k = 2*np.random.randint(1, 10)+1
kernel = np.ones((erode_k, erode_k), np.uint8)
mask = cv2.dilate(mask, kernel)
# random blur
if np.random.rand() < 0.9:
mask = blur_mask(mask)
return mask
def get_affine_param(from_, to_):
# use skimage tranformation
tform = trans.SimilarityTransform()
tform.estimate(from_.astype(np.float32), to_.astype(
np.float32)) # tform.estimate(from_, to_)
M = tform.params[0:2, :]
return M
def random_sharpen_img(img):
cand = ['bsharpen', 'gsharpen'] # , 'none']
mode = cand[np.random.randint(len(cand))]
# print('sharpen mode:', mode)
if mode == "bsharpen":
# Sharpening using filter2D
kernel = np.ones((3, 3)) * (-1)
kernel[1, 1] = 9
#kernel /= 9.
out = cv2.filter2D(img, -1, kernel)
elif mode == "gsharpen":
# Sharpening using Weighted Method
gaussain_blur = cv2.GaussianBlur(img, (0, 0), 3.0)
out = cv2.addWeighted(
img, 1.5, gaussain_blur, -0.5, 0, img)
else:
out = img
return out
def random_blur_img(img):
cand = ['avg', 'gaussion', 'med'] # , 'none']
mode = cand[np.random.randint(len(cand))]
# print('blur mode:', mode)
ksize = 2*np.random.randint(1, 5)+1
if mode == 'avg':
# Averaging
out = cv2.blur(img, (ksize, ksize))
elif mode == 'gaussion':
# Gaussian Blurring
out = cv2.GaussianBlur(img, (ksize, ksize), 0)
elif mode == 'med':
# Median blurring
out = cv2.medianBlur(img, ksize)
else:
out = img
# elif mode == 'bilateral'
# # Bilateral Filtering
# out = cv2.bilateralFilter(img,9,75,75)
return out
def random_warp_img(img, prob=0.5):
H, W, C = img.shape
param = gen_warp_params(W, flip=False)
choice = [True, False]
out = warp_by_params(param, img,
can_flip=False, # choice[np.random.randint(2)],
can_transform=False, # choice[np.random.randint(2)],
can_warp=(np.random.randint(10) < int(prob*10)),
border_replicate=choice[np.random.randint(2)])
return out
def main(args):
np.random.seed(int(time.time()))
detector = dlib.get_frontal_face_detector()
landmark_predictor = dlib.shape_predictor(args.model)
src_im = cv2.imread(args.src)
tgt_im = cv2.imread(args.tgt)
H, W, C = tgt_im.shape
src_im = cv2.resize(src_im, (W, H))
def get_shape(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dets = detector(img, 1)
det = dets[0]
shape = landmark_predictor(img, det)
return shape, det
src_shape, src_det = get_shape(src_im)
src_5_pts = get_5_keypoint(src_shape)
src_mask = get_mask(src_shape, src_im, whole=True, deform=False)
tgt_shape, tgt_det = get_shape(tgt_im)
tgt_5_pts = get_5_keypoint(tgt_shape)
tgt_mask = get_mask(tgt_shape, tgt_im, whole=False, deform=True)
#aff_param = get_affine_param(src_5_pts, tgt_5_pts)
# color transfer:
mask = src_mask[:, :, 0:1]/255.
ct_modes = ['lct', 'rct', 'idt', 'idt-m', 'mkl', 'mkl-m',
'sot', 'sot-m', 'mix-m'] # , 'seamless-hist-match']
for mode in ct_modes:
colored_src = color_transfer(mode, src_im, tgt_im, mask)
cv2.imwrite('{}_colored.png'.format(mode), colored_src)
src_im = colored_src
w1, h1 = src_det.right()-src_det.left(), src_det.bottom()-src_det.top()
w2, h2 = tgt_det.right()-tgt_det.left(), tgt_det.bottom()-tgt_det.top()
w_scale, h_scale = w2/w1, h2/h1
scaled_src = cv2.resize(src_im, (int(W*w_scale), int(H*h_scale)))
scaled_mask = cv2.resize(src_mask, (int(W*w_scale), int(H*h_scale)))
src_5_pts[:, 0] = src_5_pts[:, 0]*w_scale
src_5_pts[:, 1] = src_5_pts[:, 1]*h_scale
aff_param = get_affine_param(src_5_pts, tgt_5_pts)
aligned_src = cv2.warpAffine(
scaled_src, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
aligned_mask = cv2.warpAffine(
scaled_mask, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
center = get_mask_center(aligned_mask)
print('mask center:', center)
# colored_src = transfer_color(aligned_src, tgt_im)
init_blend = cv2.seamlessClone(
aligned_src, tgt_im, aligned_mask, center, cv2.NORMAL_CLONE)
cv2.imwrite('init_blended.png', init_blend)
# aligned_blend = cv2.warpAffine(
# colored_blend, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
b_mask = tgt_mask[:, :, 0:1]/255.
out_blend = init_blend*b_mask + tgt_im*(1. - b_mask)
cv2.imwrite('out_blended.png', out_blend)
res = 256
blend_crop = crop_img_bbox(out_blend, tgt_det, res, scale=1.5)
mask_crop = crop_img_bbox(tgt_mask, tgt_det, res, scale=1.5)
boundary = get_boundary(mask_crop)
cv2.imwrite('crop_blend.png', blend_crop)
cv2.imwrite('crop_mask.png', mask_crop)
cv2.imwrite('crop_bound.png', boundary*255)
if __name__ == "__main__":
p = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument('-s', '--src', type=str,
help='src image')
p.add_argument('-t', '--tgt', type=str,
help='tgt image')
p.add_argument('--model', type=str, default='/data1/yuchen/download/face_landmark/shape_predictor_68_face_landmarks.dat',
help="path to downloaded detector")
args = p.parse_args()
print(args)
main(args)
|