File size: 1,946 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Abstract Class for the Deepfake Detector

import abc
import torch
import torch.nn as nn
from typing import Union

class AbstractDetector(nn.Module, metaclass=abc.ABCMeta):
    """

    All deepfake detectors should subclass this class.

    """
    def __init__(self, config=None, load_param: Union[bool, str] = False):
        """

        config:   (dict)

            configurations for the model

        load_param:  (False | True | Path(str))

            False Do not read; True Read the default path; Path Read the required path

        """
        super().__init__()

    @abc.abstractmethod
    def features(self, data_dict: dict) -> torch.tensor:
        """

        Returns the features from the backbone given the input data.

        """
        pass

    @abc.abstractmethod
    def forward(self, data_dict: dict, inference=False) -> dict:
        """

        Forward pass through the model, returning the prediction dictionary.

        """
        pass

    @abc.abstractmethod
    def classifier(self, features: torch.tensor) -> torch.tensor:
        """

        Classifies the features into classes.

        """
        pass

    @abc.abstractmethod
    def build_backbone(self, config):
        """

        Builds the backbone of the model.

        """
        pass

    @abc.abstractmethod
    def build_loss(self, config):
        """

        Builds the loss function for the model.

        """
        pass

    @abc.abstractmethod
    def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
        """

        Returns the losses for the model.

        """
        pass

    @abc.abstractmethod
    def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
        """

        Returns the training metrics for the model.

        """
        pass