File size: 1,946 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-0706
# description: Abstract Class for the Deepfake Detector
import abc
import torch
import torch.nn as nn
from typing import Union
class AbstractDetector(nn.Module, metaclass=abc.ABCMeta):
"""
All deepfake detectors should subclass this class.
"""
def __init__(self, config=None, load_param: Union[bool, str] = False):
"""
config: (dict)
configurations for the model
load_param: (False | True | Path(str))
False Do not read; True Read the default path; Path Read the required path
"""
super().__init__()
@abc.abstractmethod
def features(self, data_dict: dict) -> torch.tensor:
"""
Returns the features from the backbone given the input data.
"""
pass
@abc.abstractmethod
def forward(self, data_dict: dict, inference=False) -> dict:
"""
Forward pass through the model, returning the prediction dictionary.
"""
pass
@abc.abstractmethod
def classifier(self, features: torch.tensor) -> torch.tensor:
"""
Classifies the features into classes.
"""
pass
@abc.abstractmethod
def build_backbone(self, config):
"""
Builds the backbone of the model.
"""
pass
@abc.abstractmethod
def build_loss(self, config):
"""
Builds the loss function for the model.
"""
pass
@abc.abstractmethod
def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
"""
Returns the losses for the model.
"""
pass
@abc.abstractmethod
def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
"""
Returns the training metrics for the model.
"""
pass
|