File size: 17,232 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
'''

# author: Zhiyuan Yan

# email: [email protected]

# date: 2023-0706

# description: Class for the UCFDetector



Functions in the Class are summarized as:

1. __init__: Initialization

2. build_backbone: Backbone-building

3. build_loss: Loss-function-building

4. features: Feature-extraction

5. classifier: Classification

6. get_losses: Loss-computation

7. get_train_metrics: Training-metrics-computation

8. get_test_metrics: Testing-metrics-computation

9. forward: Forward-propagation



Reference:

@article{yan2023ucf,

  title={UCF: Uncovering Common Features for Generalizable Deepfake Detection},

  author={Yan, Zhiyuan and Zhang, Yong and Fan, Yanbo and Wu, Baoyuan},

  journal={arXiv preprint arXiv:2304.13949},

  year={2023}

}

'''

import os
import datetime
import logging
import random
import numpy as np
from sklearn import metrics
from typing import Union
from collections import defaultdict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import DataParallel
from torch.utils.tensorboard import SummaryWriter

from metrics.base_metrics_class import calculate_metrics_for_train

from .base_detector import AbstractDetector
from detectors import DETECTOR
from networks import BACKBONE
from loss import LOSSFUNC

logger = logging.getLogger(__name__)

@DETECTOR.register_module(module_name='ucf')
class UCFDetector(AbstractDetector):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.num_classes = config['backbone_config']['num_classes']
        self.encoder_feat_dim = config['encoder_feat_dim']
        self.half_fingerprint_dim = self.encoder_feat_dim//2

        self.encoder_f = self.build_backbone(config)
        self.encoder_c = self.build_backbone(config)

        self.loss_func = self.build_loss(config)
        self.prob, self.label = [], []
        self.correct, self.total = 0, 0
        
        # basic function
        self.lr = nn.LeakyReLU(inplace=True)
        self.do = nn.Dropout(0.2)
        self.pool = nn.AdaptiveAvgPool2d(1)

        # conditional gan
        self.con_gan = Conditional_UNet()

        # head
        specific_task_number = len(config['train_dataset']) + 1  # default: 5 in FF++
        self.head_spe = Head(
            in_f=self.half_fingerprint_dim, 
            hidden_dim=self.encoder_feat_dim,
            out_f=specific_task_number
        )
        self.head_sha = Head(
            in_f=self.half_fingerprint_dim,
            hidden_dim=self.encoder_feat_dim, 
            out_f=self.num_classes
        )
        self.block_spe = Conv2d1x1(
            in_f=self.encoder_feat_dim,
            hidden_dim=self.half_fingerprint_dim, 
            out_f=self.half_fingerprint_dim
        )
        self.block_sha = Conv2d1x1(
            in_f=self.encoder_feat_dim, 
            hidden_dim=self.half_fingerprint_dim, 
            out_f=self.half_fingerprint_dim
        )
        
    def build_backbone(self, config):
        # prepare the backbone
        backbone_class = BACKBONE[config['backbone_name']]
        model_config = config['backbone_config']
        backbone = backbone_class(model_config)
        # if donot load the pretrained weights, fail to get good results
        state_dict = torch.load(config['pretrained'])
        for name, weights in state_dict.items():
            if 'pointwise' in name:
                state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1)
        state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k}
        backbone.load_state_dict(state_dict, False)
        logger.info('Load pretrained model successfully!')
        return backbone
    
    def build_loss(self, config):
        cls_loss_class = LOSSFUNC[config['loss_func']['cls_loss']]
        spe_loss_class = LOSSFUNC[config['loss_func']['spe_loss']]
        con_loss_class = LOSSFUNC[config['loss_func']['con_loss']]
        rec_loss_class = LOSSFUNC[config['loss_func']['rec_loss']]
        cls_loss_func = cls_loss_class()
        spe_loss_func = spe_loss_class()
        con_loss_func = con_loss_class(margin=3.0)
        rec_loss_func = rec_loss_class()
        loss_func = {
            'cls': cls_loss_func, 
            'spe': spe_loss_func,
            'con': con_loss_func,
            'rec': rec_loss_func,
        }
        return loss_func
    
    def features(self, data_dict: dict) -> torch.tensor:
        cat_data = data_dict['image']
        # encoder
        f_all = self.encoder_f.features(cat_data)
        c_all = self.encoder_c.features(cat_data)
        feat_dict = {'forgery': f_all, 'content': c_all}
        return feat_dict

    def classifier(self, features: torch.tensor) -> torch.tensor:
        # classification, multi-task
        # split the features into the specific and common forgery
        f_spe = self.block_spe(features)
        f_share = self.block_sha(features)
        return f_spe, f_share
    
    def get_losses(self, data_dict: dict, pred_dict: dict) -> dict:
        if 'label_spe' in data_dict and 'recontruction_imgs' in pred_dict:
            return self.get_train_losses(data_dict, pred_dict)
        else:  # test mode
            return self.get_test_losses(data_dict, pred_dict)

    def get_train_losses(self, data_dict: dict, pred_dict: dict) -> dict:
        # get combined, real, fake imgs
        cat_data = data_dict['image']
        real_img, fake_img = cat_data.chunk(2, dim=0)
        # get the reconstruction imgs
        reconstruction_image_1, \
        reconstruction_image_2, \
        self_reconstruction_image_1, \
        self_reconstruction_image_2 \
            = pred_dict['recontruction_imgs']
        # get label
        label = data_dict['label']
        label_spe = data_dict['label_spe']
        # get pred
        pred = pred_dict['cls']
        pred_spe = pred_dict['cls_spe']

        # 1. classification loss for common features
        loss_sha = self.loss_func['cls'](pred, label)
        
        # 2. classification loss for specific features
        loss_spe = self.loss_func['spe'](pred_spe, label_spe)

        # 3. reconstruction loss
        self_loss_reconstruction_1 = self.loss_func['rec'](fake_img, self_reconstruction_image_1)
        self_loss_reconstruction_2 = self.loss_func['rec'](real_img, self_reconstruction_image_2)
        cross_loss_reconstruction_1 = self.loss_func['rec'](fake_img, reconstruction_image_2)
        cross_loss_reconstruction_2 = self.loss_func['rec'](real_img, reconstruction_image_1)
        loss_reconstruction = \
            self_loss_reconstruction_1 + self_loss_reconstruction_2 + \
            cross_loss_reconstruction_1 + cross_loss_reconstruction_2

        # 4. constrative loss
        common_features = pred_dict['feat']
        specific_features = pred_dict['feat_spe']
        loss_con = self.loss_func['con'](common_features, specific_features, label_spe)

        # 5. total loss
        loss = loss_sha + 0.1*loss_spe + 0.3*loss_reconstruction + 0.05*loss_con
        loss_dict = {
            'overall': loss,
            'common': loss_sha,
            'specific': loss_spe,
            'reconstruction': loss_reconstruction,
            'contrastive': loss_con,
        }
        return loss_dict

    def get_test_losses(self, data_dict: dict, pred_dict: dict) -> dict:
        # get label
        label = data_dict['label']
        # get pred
        pred = pred_dict['cls']
        # for test mode, only classification loss for common features
        loss = self.loss_func['cls'](pred, label)
        loss_dict = {'common': loss}
        return loss_dict

    def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict:
        def get_accracy(label, output):
            _, prediction = torch.max(output, 1)    # argmax
            correct = (prediction == label).sum().item()
            accuracy = correct / prediction.size(0)
            return accuracy
        
        # get pred and label
        label = data_dict['label']
        pred = pred_dict['cls']
        label_spe = data_dict['label_spe']
        pred_spe = pred_dict['cls_spe']

        # compute metrics for batch data
        auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach())
        acc_spe = get_accracy(label_spe.detach(), pred_spe.detach())
        metric_batch_dict = {'acc': acc, 'acc_spe': acc_spe, 'auc': auc, 'eer': eer, 'ap': ap}
        # we dont compute the video-level metrics for training
        return metric_batch_dict

    def forward(self, data_dict: dict, inference=False) -> dict:
        # split the features into the content and forgery
        features = self.features(data_dict)
        forgery_features, content_features = features['forgery'], features['content']
        # get the prediction by classifier (split the common and specific forgery)
        f_spe, f_share = self.classifier(forgery_features)

        if inference:
            # inference only consider share loss
            out_sha, sha_feat = self.head_sha(f_share)
            out_spe, spe_feat = self.head_spe(f_spe)
            prob_sha = torch.softmax(out_sha, dim=1)[:, 1]
            self.prob.append(
                prob_sha
                .detach()
                .squeeze()
                .cpu()
                .numpy()
            )
            self.label.append(
                data_dict['label']
                .detach()
                .squeeze()
                .cpu()
                .numpy()
            )
            # deal with acc
            _, prediction_class = torch.max(out_sha, 1)
            common_label = (data_dict['label'] >= 1)
            correct = (prediction_class == common_label).sum().item()
            self.correct += correct
            self.total += data_dict['label'].size(0)

            pred_dict = {'cls': out_sha, 'feat': sha_feat}
            return  pred_dict

        bs = f_share.size(0)
        # using idx aug in the training mode
        aug_idx = random.random()
        if aug_idx < 0.7:
            # real
            idx_list = list(range(0, bs//2))
            random.shuffle(idx_list)
            f_share[0: bs//2] = f_share[idx_list]
            # fake
            idx_list = list(range(bs//2, bs))
            random.shuffle(idx_list)
            f_share[bs//2: bs] = f_share[idx_list]
        
        # concat spe and share to obtain new_f_all
        f_all = torch.cat((f_spe, f_share), dim=1)
        
        # reconstruction loss
        f2, f1 = f_all.chunk(2, dim=0)
        c2, c1 = content_features.chunk(2, dim=0)

        # ==== self reconstruction ==== #
        # f1 + c1 -> f11, f11 + c1 -> near~I1
        self_reconstruction_image_1 = self.con_gan(f1, c1)

        # f2 + c2 -> f2, f2 + c2 -> near~I2
        self_reconstruction_image_2 = self.con_gan(f2, c2)

        # ==== cross combine ==== #
        reconstruction_image_1 = self.con_gan(f1, c2)
        reconstruction_image_2 = self.con_gan(f2, c1)

        # head for spe and sha
        out_spe, spe_feat = self.head_spe(f_spe)
        out_sha, sha_feat = self.head_sha(f_share)

        # get the probability of the pred
        prob_sha = torch.softmax(out_sha, dim=1)[:, 1]
        prob_spe = torch.softmax(out_spe, dim=1)[:, 1]

        # build the prediction dict for each output
        pred_dict = {
            'cls': out_sha, 
            'prob': prob_sha, 
            'feat': sha_feat,
            'cls_spe': out_spe,
            'prob_spe': prob_spe,
            'feat_spe': spe_feat,
            'feat_content': content_features,
            'recontruction_imgs': (
                reconstruction_image_1,
                reconstruction_image_2,
                self_reconstruction_image_1, 
                self_reconstruction_image_2
            )
        }
        return pred_dict

def sn_double_conv(in_channels, out_channels):
    return nn.Sequential(
        nn.utils.spectral_norm(
            nn.Conv2d(in_channels, in_channels, 3, padding=1)),
        nn.utils.spectral_norm(
            nn.Conv2d(in_channels, out_channels, 3, padding=1, stride=2)),
        nn.LeakyReLU(0.2, inplace=True)
    )

def r_double_conv(in_channels, out_channels):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(out_channels, out_channels, 3, padding=1),
        nn.ReLU(inplace=True)
    )

class AdaIN(nn.Module):
    def __init__(self, eps=1e-5):
        super().__init__()
        self.eps = eps
        # self.l1 = nn.Linear(num_classes, in_channel*4, bias=True) #bias is good :)

    def c_norm(self, x, bs, ch, eps=1e-7):
        # assert isinstance(x, torch.cuda.FloatTensor)
        x_var = x.var(dim=-1) + eps
        x_std = x_var.sqrt().view(bs, ch, 1, 1)
        x_mean = x.mean(dim=-1).view(bs, ch, 1, 1)
        return x_std, x_mean

    def forward(self, x, y):
        assert x.size(0)==y.size(0)
        size = x.size()
        bs, ch = size[:2]
        x_ = x.view(bs, ch, -1)
        y_ = y.reshape(bs, ch, -1)
        x_std, x_mean = self.c_norm(x_, bs, ch, eps=self.eps)
        y_std, y_mean = self.c_norm(y_, bs, ch, eps=self.eps)
        out =   ((x - x_mean.expand(size)) / x_std.expand(size)) \
                * y_std.expand(size) + y_mean.expand(size)
        return out

class Conditional_UNet(nn.Module):

    def init_weight(self, std=0.2):
        for m in self.modules():
            cn = m.__class__.__name__
            if cn.find('Conv') != -1:
                m.weight.data.normal_(0., std)
            elif cn.find('Linear') != -1:
                m.weight.data.normal_(1., std)
                m.bias.data.fill_(0)

    def __init__(self):
        super(Conditional_UNet, self).__init__()

        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.maxpool = nn.MaxPool2d(2)
        self.dropout = nn.Dropout(p=0.3)
        #self.dropout_half = HalfDropout(p=0.3)
        
        self.adain3 = AdaIN()
        self.adain2 = AdaIN()
        self.adain1 = AdaIN()

        self.dconv_up3 = r_double_conv(512, 256)
        self.dconv_up2 = r_double_conv(256, 128)
        self.dconv_up1 = r_double_conv(128, 64)
        
        self.conv_last = nn.Conv2d(64, 3, 1)
        self.up_last = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=True)
        self.activation = nn.Tanh()
        #self.init_weight() 
        
    def forward(self, c, x):  # c is the style and x is the content
        x = self.adain3(x, c)
        x = self.upsample(x)
        x = self.dropout(x)
        x = self.dconv_up3(x)
        c = self.upsample(c)
        c = self.dropout(c)
        c = self.dconv_up3(c)

        x = self.adain2(x, c)
        x = self.upsample(x)        
        x = self.dropout(x)     
        x = self.dconv_up2(x)
        c = self.upsample(c)        
        c = self.dropout(c)     
        c = self.dconv_up2(c)

        x = self.adain1(x, c)
        x = self.upsample(x)        
        x = self.dropout(x)
        x = self.dconv_up1(x)
        
        x = self.conv_last(x)
        out = self.up_last(x)
        
        return self.activation(out)

class MLP(nn.Module):
    def __init__(self, in_f, hidden_dim, out_f):
        super(MLP, self).__init__()
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.mlp = nn.Sequential(nn.Linear(in_f, hidden_dim),
                                nn.LeakyReLU(inplace=True),
                                nn.Linear(hidden_dim, hidden_dim),
                                nn.LeakyReLU(inplace=True),
                                nn.Linear(hidden_dim, out_f),)

    def forward(self, x):
        x = self.pool(x)
        x = self.mlp(x)
        return x

class Conv2d1x1(nn.Module):
    def __init__(self, in_f, hidden_dim, out_f):
        super(Conv2d1x1, self).__init__()
        self.conv2d = nn.Sequential(nn.Conv2d(in_f, hidden_dim, 1, 1),
                                nn.LeakyReLU(inplace=True),
                                nn.Conv2d(hidden_dim, hidden_dim, 1, 1),
                                nn.LeakyReLU(inplace=True),
                                nn.Conv2d(hidden_dim, out_f, 1, 1),)

    def forward(self, x):
        x = self.conv2d(x)
        return x

class Head(nn.Module):
    def __init__(self, in_f, hidden_dim, out_f):
        super(Head, self).__init__()
        self.do = nn.Dropout(0.2)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.mlp = nn.Sequential(nn.Linear(in_f, hidden_dim),
                                nn.LeakyReLU(inplace=True),
                                nn.Linear(hidden_dim, out_f),)

    def forward(self, x):
        bs = x.size()[0]
        x_feat = self.pool(x).view(bs, -1)
        x = self.mlp(x_feat)
        x = self.do(x)
        return x, x_feat