File size: 10,872 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
from torch.nn import Parameter
import torch.distributed as dist
import math
def l2_norm(input, axis=1):
norm = torch.norm(input, p=2, dim=axis, keepdim=True)
output = torch.div(input, norm)
return output
def calc_logits(embeddings, kernel):
""" calculate original logits
"""
embeddings = l2_norm(embeddings, axis=1)
kernel_norm = l2_norm(kernel, axis=0)
cos_theta = torch.mm(embeddings, kernel_norm)
cos_theta = cos_theta.clamp(-1, 1) # for numerical stability
with torch.no_grad():
origin_cos = cos_theta.clone()
return cos_theta, origin_cos
@torch.no_grad()
def all_gather_tensor(input_tensor):
""" allgather tensor (difference size in 0-dim) from all workers
"""
world_size = dist.get_world_size()
tensor_size = torch.tensor([input_tensor.shape[0]], dtype=torch.int64).cuda()
tensor_size_list = [torch.ones_like(tensor_size) for _ in range(world_size)]
dist.all_gather(tensor_list=tensor_size_list, tensor=tensor_size, async_op=False)
max_size = torch.cat(tensor_size_list, dim=0).max()
padded = torch.empty(max_size.item(), *input_tensor.shape[1:], dtype=input_tensor.dtype).cuda()
padded[:input_tensor.shape[0]] = input_tensor
padded_list = [torch.ones_like(padded) for _ in range(world_size)]
dist.all_gather(tensor_list=padded_list, tensor=padded, async_op=False)
slices = []
for ts, t in zip(tensor_size_list, padded_list):
slices.append(t[:ts.item()])
return torch.cat(slices, dim=0)
def calc_top1_acc(original_logits, label,ddp=False):
"""
Compute the top1 accuracy during training
:param original_logits: logits w/o margin, [bs, C]
:param label: labels [bs]
:return: acc in all gpus
"""
assert (original_logits.size()[0] == label.size()[0])
with torch.no_grad():
_, max_index = torch.max(original_logits, dim=1, keepdim=False) # local max logit
count = (max_index == label).sum()
if ddp:
dist.all_reduce(count, dist.ReduceOp.SUM)
return count.item() / (original_logits.size()[0] * dist.get_world_size())
else:
return count.item() / (original_logits.size()[0])
def l2_norm(input, axis=1):
norm = torch.norm(input, p=2, dim=axis, keepdim=True)
output = torch.div(input, norm)
return output
class FC_ddp2(nn.Module):
"""
Implement of (CVPR2021 Consistent Instance False Positive Improves Fairness in Face Recognition)
No model parallel is used
"""
def __init__(self,
in_features,
out_features,
scale=64.0,
margin=0.4,
mode='cosface',
use_cifp=False,
reduction='mean',
ddp=False):
""" Args:
in_features: size of each input features
out_features: size of each output features
scale: norm of input feature
margin: margin
"""
super(FC_ddp2, self).__init__()
self.in_features = in_features
self.out_features = out_features # num of classes
self.scale = scale
self.margin = margin
self.mode = mode
self.use_cifp = use_cifp
self.kernel = Parameter(torch.Tensor(in_features, out_features))
self.ddp = ddp
nn.init.normal_(self.kernel, std=0.01)
self.criteria = torch.nn.CrossEntropyLoss(reduction=reduction)
def apply_margin(self, target_cos_theta):
assert self.mode in ['cosface', 'arcface'], 'Please check the mode'
if self.mode == 'arcface':
cos_m = math.cos(self.margin)
sin_m = math.sin(self.margin)
theta = math.cos(math.pi - self.margin)
sinmm = math.sin(math.pi - self.margin) * self.margin
sin_theta = torch.sqrt(1.0 - torch.pow(target_cos_theta, 2))
cos_theta_m = target_cos_theta * cos_m - sin_theta * sin_m
target_cos_theta_m = torch.where(
target_cos_theta > theta, cos_theta_m, target_cos_theta - sinmm)
elif self.mode == 'cosface':
target_cos_theta_m = target_cos_theta - self.margin
return target_cos_theta_m
def forward(self, embeddings, label, return_logits=False):
"""
:param embeddings: local gpu [bs, 512]
:param label: local labels [bs]
:param return_logits: bool
:return:
loss: computed local loss, w/wo CIFP
acc: local accuracy in one gpu
output: local logits with margins, with gradients, scaled, [bs, C].
"""
sample_num = embeddings.size(0)
if not self.use_cifp:
cos_theta, origin_cos = calc_logits(embeddings, self.kernel)
target_cos_theta = cos_theta[torch.arange(0, sample_num), label].view(-1, 1)
target_cos_theta_m = self.apply_margin(target_cos_theta)
cos_theta.scatter_(1, label.view(-1, 1).long(), target_cos_theta_m)
else:
cos_theta, origin_cos = calc_logits(embeddings, self.kernel)
cos_theta_, _ = calc_logits(embeddings, self.kernel.detach())
mask = torch.zeros_like(cos_theta) # [bs,C]
mask.scatter_(1, label.view(-1, 1).long(), 1.0) # one-hot label / gt mask
tmp_cos_theta = cos_theta - 2 * mask
tmp_cos_theta_ = cos_theta_ - 2 * mask
target_cos_theta = cos_theta[torch.arange(0, sample_num), label].view(-1, 1)
target_cos_theta_ = cos_theta_[torch.arange(0, sample_num), label].view(-1, 1)
target_cos_theta_m = self.apply_margin(target_cos_theta)
far = 1 / (self.out_features - 1) # ru+ value
# far = 1e-5
topk_mask = torch.greater(tmp_cos_theta, target_cos_theta)
topk_sum = torch.sum(topk_mask.to(torch.int32))
if self.ddp:
dist.all_reduce(topk_sum)
far_rank = math.ceil(far * (sample_num * (self.out_features - 1) * dist.get_world_size() - topk_sum))
cos_theta_neg_topk = torch.topk((tmp_cos_theta - 2 * topk_mask.to(torch.float32)).flatten(),
k=far_rank)[0] # [far_rank]
cos_theta_neg_topk = all_gather_tensor(cos_theta_neg_topk.contiguous()) # top k across all gpus
cos_theta_neg_th = torch.topk(cos_theta_neg_topk, k=far_rank)[0][-1]
cond = torch.mul(torch.bitwise_not(topk_mask), torch.greater(tmp_cos_theta, cos_theta_neg_th))
cos_theta_neg_topk = torch.mul(cond.to(torch.float32), tmp_cos_theta)
cos_theta_neg_topk_ = torch.mul(cond.to(torch.float32), tmp_cos_theta_)
cond = torch.greater(target_cos_theta_m, cos_theta_neg_topk)
cos_theta_neg_topk = torch.where(cond, cos_theta_neg_topk, cos_theta_neg_topk_)
cos_theta_neg_topk = torch.pow(cos_theta_neg_topk, 2) # F = z^p = cos^2
times = torch.sum(torch.greater(cos_theta_neg_topk, 0).to(torch.float32), dim=1, keepdim=True)
times = torch.where(torch.greater(times, 0), times, torch.ones_like(times))
cos_theta_neg_topk = torch.sum(cos_theta_neg_topk, dim=1, keepdim=True) / times # ri+/ru+
target_cos_theta_m = target_cos_theta_m - (1 + target_cos_theta_) * cos_theta_neg_topk
cos_theta.scatter_(1, label.view(-1, 1).long(), target_cos_theta_m)
output = cos_theta * self.scale
loss = self.criteria(output, label)
acc = calc_top1_acc(origin_cos * self.scale, label,self.ddp)
if return_logits:
return loss, acc, output
return loss, acc
class FC_ddp(nn.Module):
"""
Implement of (CVPR2021 Consistent Instance False Positive Improves Fairness in Face Recognition)
No model parallel is used
"""
def __init__(self,
in_features,
out_features,
scale=8.0,
margin=0.2,
mode='cosface',
use_cifp=False,
reduction='mean'):
""" Args:
in_features: size of each input features
out_features: size of each output features
scale: norm of input feature
margin: margin
"""
super(FC_ddp, self).__init__()
self.in_features = in_features
self.out_features = out_features # num of classes
self.scale = scale
self.margin = margin
self.mode = mode
self.use_cifp = use_cifp
# self.kernel = Parameter(torch.Tensor(in_features, out_features))
# nn.init.normal_(self.kernel, std=0.01)
self.criteria = torch.nn.CrossEntropyLoss(reduction=reduction)
self.sig = torch.nn.Sigmoid()
def apply_margin(self, target_cos_theta):
assert self.mode in ['cosface', 'arcface'], 'Please check the mode'
if self.mode == 'arcface':
cos_m = math.cos(self.margin)
sin_m = math.sin(self.margin)
theta = math.cos(math.pi - self.margin)
sinmm = math.sin(math.pi - self.margin) * self.margin
sin_theta = torch.sqrt(1.0 - torch.pow(target_cos_theta, 2))
cos_theta_m = target_cos_theta * cos_m - sin_theta * sin_m
target_cos_theta_m = torch.where(
target_cos_theta > theta, cos_theta_m, target_cos_theta - sinmm)
elif self.mode == 'cosface':
target_cos_theta_m = target_cos_theta - self.margin
return target_cos_theta_m
def forward(self, embeddings, label, return_logits=False):
"""
:param embeddings: local gpu [bs, 512]
:param label: local labels [bs]
:param return_logits: bool
:return:
loss: computed local loss, w/wo CIFP
acc: local accuracy in one gpu
output: local logits with margins, with gradients, scaled, [bs, C].
"""
sample_num = embeddings.size(0)
cos_theta = self.sig(embeddings)
target_cos_theta = cos_theta[torch.arange(0, sample_num), label].view(-1, 1)
# target_cos_theta_m = target_cos_theta - self.margin
target_cos_theta = target_cos_theta - self.margin
# cos_theta.scatter_(1, label.view(-1, 1).long(), target_cos_theta_m)
out = cos_theta.clone()
out.scatter_(1, label.view(-1, 1).long(), target_cos_theta)
out = out * self.scale
loss = self.criteria(out, label)
return loss
|