File size: 24,556 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import yaml
from PIL import Image
import cv2
from torchvision import transforms as T
from skimage import measure
from skimage.transform import PiecewiseAffineTransform, warp
from torch.autograd import Variable
from scipy.ndimage import binary_erosion, binary_dilation

from dataset.pair_dataset import pairDataset
from dataset.utils.color_transfer import color_transfer
from dataset.utils.faceswap_utils_sladd import blendImages as alpha_blend_fea
from dataset.utils import faceswap



class Block(nn.Module):
    def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
        super(Block, self).__init__()

        if out_filters != in_filters or strides != 1:
            self.skip = nn.Conv2d(in_filters, out_filters,
                                  1, stride=strides, bias=False)
            self.skipbn = nn.BatchNorm2d(out_filters)
        else:
            self.skip = None

        self.relu = nn.ReLU(inplace=True)
        rep = []

        filters = in_filters
        if grow_first:  # whether the number of filters grows first
            rep.append(self.relu)
            rep.append(SeparableConv2d(in_filters, out_filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))
            filters = out_filters

        for i in range(reps - 1):
            rep.append(self.relu)
            rep.append(SeparableConv2d(filters, filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(filters))

        if not grow_first:
            rep.append(self.relu)
            rep.append(SeparableConv2d(in_filters, out_filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))

        if not start_with_relu:
            rep = rep[1:]
        else:
            rep[0] = nn.ReLU(inplace=False)

        if strides != 1:
            rep.append(nn.MaxPool2d(3, strides, 1))
        self.rep = nn.Sequential(*rep)

    def forward(self, inp):
        x = self.rep(inp)

        if self.skip is not None:
            skip = self.skip(inp)
            skip = self.skipbn(skip)
        else:
            skip = inp

        x += skip
        return x

class SeparableConv2d(nn.Module):
  def __init__(self, c_in, c_out, ks, stride=1, padding=0, dilation=1, bias=False):
    super(SeparableConv2d, self).__init__()
    self.c = nn.Conv2d(c_in, c_in, ks, stride, padding, dilation, groups=c_in, bias=bias)
    self.pointwise = nn.Conv2d(c_in, c_out, 1, 1, 0, 1, 1, bias=bias)

  def forward(self, x):
    x = self.c(x)
    x = self.pointwise(x)
    return x

class Xception_SLADDSyn(nn.Module):
    """

    Xception optimized for the ImageNet dataset, as specified in

    https://arxiv.org/pdf/1610.02357.pdf

    """

    def __init__(self, num_classes=2, num_region=7, num_type=2, num_mag=1, inc=6):
        """ Constructor

        Args:

            num_classes: number of classes

        """
        super(Xception_SLADDSyn, self).__init__()
        self.num_region = num_region
        self.num_type = num_type
        self.num_mag = num_mag
        dropout = 0.5

        # Entry flow
        self.iniconv = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
        # self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
        self.bn2 = nn.BatchNorm2d(64)
        # do relu here

        self.block1 = Block(
            64, 128, 2, 2, start_with_relu=False, grow_first=True)
        self.block2 = Block(
            128, 256, 2, 2, start_with_relu=True, grow_first=True)
        self.block3 = Block(
            256, 728, 2, 2, start_with_relu=True, grow_first=True)

        # middle flow
        self.block4 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block5 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block6 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block7 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)

        self.block8 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block9 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block10 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block11 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)

        # Exit flow
        self.block12 = Block(
            728, 1024, 2, 2, start_with_relu=True, grow_first=False)

        self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(1536)

        # do relu here
        self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(2048)
        self.fc_region = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(2048, num_region))
        self.fc_type = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(2048, num_type))
        self.fc_mag = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(2048, num_mag))

    def fea_part1_0(self, x):
        x = self.iniconv(x)
        x = self.bn1(x)
        x = self.relu(x)

        return x

    def fea_part1_1(self, x):
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        return x

    def fea_part1(self, x):
        x = self.iniconv(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        return x

    def fea_part2(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)

        return x

    def fea_part3(self, x):
        x = self.block4(x)
        x = self.block5(x)
        x = self.block6(x)
        x = self.block7(x)

        return x

    def fea_part4(self, x):
        x = self.block8(x)
        x = self.block9(x)
        x = self.block10(x)
        x = self.block11(x)
        x = self.block12(x)

        return x

    def fea_part5(self, x):
        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu(x)

        x = self.conv4(x)
        x = self.bn4(x)

        return x

    def features(self, input):
        x = self.fea_part1(input)

        x = self.fea_part2(x)
        x = self.fea_part3(x)
        x = self.fea_part4(x)

        x = self.fea_part5(x)
        return x

    def classifier(self, features):
        x = self.relu(features)

        x = F.adaptive_avg_pool2d(x, (1, 1))
        x = x.view(x.size(0), -1)
        out = self.last_linear(x)
        return out, x

    def forward(self, input):
        x = self.features(input)
        x = self.relu(x)
        x = F.adaptive_avg_pool2d(x, (1, 1))
        x = x.view(x.size(0), -1)

        region_num = self.fc_region(x)
        type_num = self.fc_type(x)
        mag = self.fc_mag(x)

        return region_num, type_num, mag


def mask_postprocess(mask):
    def blur_mask(mask):
        blur_k = 2 * np.random.randint(1, 10) - 1

        # kernel = np.ones((blur_k+1, blur_k+1), np.uint8)
        # mask = cv2.erode(mask, kernel)

        mask = cv2.GaussianBlur(mask, (blur_k, blur_k), 0)

        return mask

    # random erode/dilate
    prob = np.random.rand()
    if prob < 0.3:
        erode_k = 2 * np.random.randint(1, 10) + 1
        kernel = np.ones((erode_k, erode_k), np.uint8)
        mask = cv2.erode(mask, kernel)
    elif prob < 0.6:
        erode_k = 2 * np.random.randint(1, 10) + 1
        kernel = np.ones((erode_k, erode_k), np.uint8)
        mask = cv2.dilate(mask, kernel)

    # random blur
    if np.random.rand() < 0.9:
        mask = blur_mask(mask)

    return mask

def xception(num_region=7, num_type=2, num_mag=1, pretrained='imagenet', inc=6):
    model = Xception_SLADDSyn(num_region=num_region, num_type=num_type, num_mag=num_mag, inc=inc)
    return model



class TransferModel(nn.Module):
    """

    Simple transfer learning model that takes an imagenet pretrained model with

    a fc layer as base model and retrains a new fc layer for num_out_classes

    """

    def __init__(self, config, num_region=7, num_type=2, num_mag=1, return_fea=False, inc=6):
        super(TransferModel, self).__init__()
        self.return_fea = return_fea
        def return_pytorch04_xception(pretrained=True):
            # Raises warning "src not broadcastable to dst" but thats fine
            model = xception(num_region=num_region, num_type=num_type, num_mag=num_mag, inc=inc, pretrained=False)
            if pretrained:
                # Load model in torch 0.4+
                # model.fc = model.last_linear
                # del model.last_linear
                state_dict = torch.load(config['pretrained'])
                print('Loaded pretrained model (ImageNet)....')
                for name, weights in state_dict.items():
                    if 'pointwise' in name:
                        state_dict[name] = weights.unsqueeze(
                            -1).unsqueeze(-1)
                model.load_state_dict(state_dict, strict=False)
                # model.last_linear = model.fc
                # del model.fc
            return model

        self.model = return_pytorch04_xception()
        # Replace fc

        if inc != 3:
            self.model.iniconv = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
            nn.init.xavier_normal(self.model.iniconv.weight.data, gain=0.02)

    def set_trainable_up_to(self, boolean=False, layername="Conv2d_4a_3x3"):
        """

        Freezes all layers below a specific layer and sets the following layers

        to true if boolean else only the fully connected final layer

        :param boolean:

        :param layername: depends on lib, for inception e.g. Conv2d_4a_3x3

        :return:

        """
        # Stage-1: freeze all the layers
        if layername is None:
            for i, param in self.model.named_parameters():
                param.requires_grad = True
                return
        else:
            for i, param in self.model.named_parameters():
                param.requires_grad = False
        if boolean:
            # Make all layers following the layername layer trainable
            ct = []
            found = False
            for name, child in self.model.named_children():
                if layername in ct:
                    found = True
                    for params in child.parameters():
                        params.requires_grad = True
                ct.append(name)
            if not found:
                raise NotImplementedError('Layer not found, cant finetune!'.format(
                    layername))
        else:
            # Make fc trainable
            for param in self.model.last_linear.parameters():
                param.requires_grad = True

    def forward(self, x):
        region_num, type_num, mag = self.model(x)
        return region_num, type_num, mag

    def features(self, x):
        x = self.model.features(x)
        return x

    def classifier(self, x):
        out, x = self.model.classifier(x)
        return out, x



def dist(p1, p2):
    return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)


def generate_random_mask(mask, res=256):
    randwl = np.random.randint(10, 60)
    randwr = np.random.randint(10, 60)
    randhu = np.random.randint(10, 60)
    randhd = np.random.randint(10, 60)
    newmask = np.zeros(mask.shape)
    mask = np.where(mask > 0.1, 1, 0)
    props = measure.regionprops(mask)
    if len(props) == 0:
        return newmask
    center_x, center_y = props[0].centroid
    center_x = int(round(center_x))
    center_y = int(round(center_y))
    newmask[max(center_x - randwl, 0):min(center_x + randwr, res - 1),
    max(center_y - randhu, 0):min(center_x + randhd, res - 1)] = 1
    newmask *= mask
    return newmask


def random_deform(mask, nrows, ncols, mean=0, std=10):
    h, w = mask.shape[:2]
    rows = np.linspace(0, h - 1, nrows).astype(np.int32)
    cols = np.linspace(0, w - 1, ncols).astype(np.int32)
    rows += np.random.normal(mean, std, size=rows.shape).astype(np.int32)
    rows += np.random.normal(mean, std, size=cols.shape).astype(np.int32)
    rows, cols = np.meshgrid(rows, cols)
    anchors = np.vstack([rows.flat, cols.flat]).T
    assert anchors.shape[1] == 2 and anchors.shape[0] == ncols * nrows
    deformed = anchors + np.random.normal(mean, std, size=anchors.shape)
    np.clip(deformed[:, 0], 0, h - 1, deformed[:, 0])
    np.clip(deformed[:, 1], 0, w - 1, deformed[:, 1])

    trans = PiecewiseAffineTransform()
    trans.estimate(anchors, deformed.astype(np.int32))
    warped = warp(mask, trans)
    warped *= mask
    blured = cv2.GaussianBlur(warped.astype(float), (5, 5), 3)
    return blured


def get_five_key(landmarks_68):
    # get the five key points by using the landmarks
    leye_center = (landmarks_68[36] + landmarks_68[39]) * 0.5
    reye_center = (landmarks_68[42] + landmarks_68[45]) * 0.5
    nose = landmarks_68[33]
    lmouth = landmarks_68[48]
    rmouth = landmarks_68[54]
    leye_left = landmarks_68[36]
    leye_right = landmarks_68[39]
    reye_left = landmarks_68[42]
    reye_right = landmarks_68[45]
    out = [tuple(x.astype('int32')) for x in [
        leye_center, reye_center, nose, lmouth, rmouth, leye_left, leye_right, reye_left, reye_right
    ]]
    return out


def remove_eyes(image, landmarks, opt):
    ##l: left eye; r: right eye, b: both eye
    if opt == 'l':
        (x1, y1), (x2, y2) = landmarks[5:7]
    elif opt == 'r':
        (x1, y1), (x2, y2) = landmarks[7:9]
    elif opt == 'b':
        (x1, y1), (x2, y2) = landmarks[:2]
    else:
        print('wrong region')
    mask = np.zeros_like(image[..., 0])
    line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 4)
    if opt != 'b':
        dilation *= 4
    line = binary_dilation(line, iterations=dilation)
    return line


def remove_nose(image, landmarks):
    (x1, y1), (x2, y2) = landmarks[:2]
    x3, y3 = landmarks[2]
    mask = np.zeros_like(image[..., 0])
    x4 = int((x1 + x2) / 2)
    y4 = int((y1 + y2) / 2)
    line = cv2.line(mask, (x3, y3), (x4, y4), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 4)
    line = binary_dilation(line, iterations=dilation)
    return line


def remove_mouth(image, landmarks):
    (x1, y1), (x2, y2) = landmarks[3:5]
    mask = np.zeros_like(image[..., 0])
    line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
    w = dist((x1, y1), (x2, y2))
    dilation = int(w // 3)
    line = binary_dilation(line, iterations=dilation)
    return line


def blend_fake_to_real(realimg, real_lmk, fakeimg, fakemask, fake_lmk, deformed_fakemask, type, mag):
    # source: fake image
    # target: real image
    realimg = ((realimg + 1) / 2 * 255).astype(np.uint8)
    fakeimg = ((fakeimg + 1) / 2 * 255).astype(np.uint8)
    H, W, C = realimg.shape
    #由于我们已经做过对齐,这里可以直接用。原代码是做了对齐操作的. 这个src就是fake
    aligned_src = fakeimg
    src_mask = deformed_fakemask
    src_mask = src_mask > 0  # (H, W)

    tgt_mask = np.asarray(src_mask, dtype=np.uint8)
    tgt_mask = mask_postprocess(tgt_mask)

    ct_modes = ['rct-m', 'rct-fs', 'avg-align', 'faceswap']
    mode_idx = np.random.randint(len(ct_modes))
    mode = ct_modes[mode_idx]

    if mode != 'faceswap':
        c_mask = tgt_mask / 255.
        c_mask[c_mask > 0] = 1
        if len(c_mask.shape) < 3:
            c_mask = np.expand_dims(c_mask, 2)
        src_crop = color_transfer(mode, aligned_src, realimg, c_mask)
    else:
        c_mask = tgt_mask.copy()
        c_mask[c_mask > 0] = 255
        masked_tgt = faceswap.apply_mask(realimg, c_mask)
        masked_src = faceswap.apply_mask(aligned_src, c_mask)
        src_crop = faceswap.correct_colours(masked_tgt, masked_src, np.array(real_lmk))

    if tgt_mask.mean() < 0.005 or src_crop.max() == 0:
        out_blend = realimg
    else:
        if type == 0:
            out_blend, a_mask = alpha_blend_fea(src_crop, realimg, tgt_mask,
                                                featherAmount=0.2 * np.random.rand())
        elif type == 1:
            b_mask = (tgt_mask * 255).astype(np.uint8)
            l, t, w, h = cv2.boundingRect(b_mask)
            center = (int(l + w / 2), int(t + h / 2))
            out_blend = cv2.seamlessClone(src_crop, realimg, b_mask, center, cv2.NORMAL_CLONE)
        else:
            out_blend = copy_fake_to_real(realimg, src_crop, tgt_mask, mag)

    return out_blend, tgt_mask


def copy_fake_to_real(realimg, fakeimg, mask, mag):
    mask = np.expand_dims(mask, 2)
    newimg = fakeimg * mask * mag + realimg * (1 - mask) + realimg * mask * (1 - mag)
    return newimg


class synthesizer(nn.Module):
    def __init__(self,config):
        super(synthesizer, self).__init__()
        self.netG = TransferModel(config=config,num_region=10, num_type=4, num_mag=1, inc=6)
        normalize = T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        self.transforms = T.Compose([T.ToTensor(), normalize])

    def parse(self, img, reg, real_lmk, fakemask):
        five_key = get_five_key(real_lmk)
        if reg == 0:
            mask = remove_eyes(img, five_key, 'l')
        elif reg == 1:
            mask = remove_eyes(img, five_key, 'r')
        elif reg == 2:
            mask = remove_eyes(img, five_key, 'b')
        elif reg == 3:
            mask = remove_nose(img, five_key)
        elif reg == 4:
            mask = remove_mouth(img, five_key)
        elif reg == 5:
            mask = remove_nose(img, five_key) + remove_eyes(img, five_key, 'l')
        elif reg == 6:
            mask = remove_nose(img, five_key) + remove_eyes(img, five_key, 'r')
        elif reg == 7:
            mask = remove_nose(img, five_key) + remove_eyes(img, five_key, 'b')
        elif reg == 8:
            mask = remove_nose(img, five_key) + remove_mouth(img, five_key)
        elif reg == 9:
            mask = remove_eyes(img, five_key, 'b') + remove_nose(img, five_key) + remove_mouth(img, five_key)
        else:
            mask = generate_random_mask(fakemask)
        mask = random_deform(mask, 5, 5)
        return mask * 1.0

    def get_variable(self, inputs, cuda=False, **kwargs):
        if type(inputs) in [list, np.ndarray]:
            inputs = torch.Tensor(inputs)
        if cuda:
            out = Variable(inputs.cuda(), **kwargs)
        else:
            out = Variable(inputs, **kwargs)
        return out

    def calculate(self, logits):
        if logits.shape[1] != 1:
            probs = F.softmax(logits, dim=-1)
            log_prob = F.log_softmax(logits, dim=-1)
            entropy = -(log_prob * probs).sum(1, keepdim=False)
            action = probs.multinomial(num_samples=1).data
            selected_log_prob = log_prob.gather(1, self.get_variable(action, requires_grad=False))
        else:
            probs = torch.sigmoid(logits)
            log_prob = torch.log(torch.sigmoid(logits))
            entropy = -(log_prob * probs).sum(1, keepdim=False)
            action = probs
            selected_log_prob = log_prob
        return entropy, selected_log_prob[:, 0], action[:, 0]

    def forward(self, img, fake_img, real_lmk, fake_lmk, real_mask, fake_mask, label=None):
        # based on pair_dataset, here, img always is real, fake_img always is fake
        region_num, type_num, mag = self.netG(torch.cat((img, fake_img), 1))
        reg_etp, reg_log_prob, reg = self.calculate(region_num)
        type_etp, type_log_prob, type = self.calculate(type_num)
        mag_etp, mag_log_prob, mag = self.calculate(mag)
        entropy = reg_etp + type_etp + mag_etp
        log_prob = reg_log_prob + type_log_prob + mag_log_prob
        newlabel = []
        typelabel = []
        maglabel = []
        magmask = []
        #####################
        alt_img = torch.ones(img.shape)
        alt_mask = np.zeros((img.shape[0], 16, 16))
        if label is None:
            label=np.zeros(img.shape[0])
        for i in range(img.shape[0]):
            imgcp = np.transpose(img[i].cpu().numpy(), (1, 2, 0)).copy()
            fake_imgcp = np.transpose(fake_img[i].cpu().numpy(), (1, 2, 0)).copy()
            ##only work for real imgs and not do-nothing choice
            if label[i] == 0 and type[i] != 3:
                mask = self.parse(fake_imgcp, reg[i], fake_lmk[i].cpu().numpy(),
                                  fake_mask[i].cpu().numpy())
                newimg, newmask = blend_fake_to_real(imgcp, real_lmk[i].cpu().numpy(),
                                                     fake_imgcp, fake_mask.cpu().numpy(),
                                                     fake_lmk[i].cpu().numpy(), mask, type[i],
                                                     mag[i].detach().cpu().numpy())
                newimg = self.transforms(Image.fromarray(np.array(newimg, dtype=np.uint8)))
                newlabel.append(int(1))
                typelabel.append(int(type[i].cpu().numpy()))
                if type[i] == 2:
                    magmask.append(int(1))
                else:
                    magmask.append(int(0))
            else:
                newimg = self.transforms(Image.fromarray(np.array((imgcp + 1) / 2 * 255, dtype=np.uint8)))
                newmask =real_mask[i].squeeze(2)[:,:,0].cpu().numpy()
                newlabel.append(int(label[i]))
                if label[i] == 0:
                    typelabel.append(int(3))
                else:
                    typelabel.append(int(4))
                magmask.append(int(0))
            if newmask is None:
                newmask = np.zeros((16, 16))
            newmask = cv2.resize(newmask, (16, 16), interpolation=cv2.INTER_CUBIC)
            alt_img[i] = newimg
            alt_mask[i] = newmask

        alt_mask = torch.from_numpy(alt_mask.astype(np.float32)).unsqueeze(1)
        newlabel = torch.tensor(newlabel)
        typelabel = torch.tensor(typelabel)
        maglabel = mag
        magmask = torch.tensor(magmask)
        return log_prob, entropy, alt_img.detach(), alt_mask.detach(), \
            newlabel.detach(), typelabel.detach(), maglabel.detach(), magmask.detach()


if __name__ == '__main__':

    with open(r'H:\code\DeepfakeBench\training\config\detector\sladd_xception.yaml', 'r') as f:
        config = yaml.safe_load(f)
    syn=synthesizer(config=config).cuda()
    config['data_manner'] = 'lmdb'
    config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
    config['sample_size']=256
    config['with_mask']=True
    config['with_landmark']=True
    config['use_data_augmentation']=True
    config['data_aug']['rotate_prob']=1
    train_set = pairDataset(config=config, mode='train')
    train_data_loader = \
        torch.utils.data.DataLoader(
            dataset=train_set,
            batch_size=config['train_batchSize'],
            shuffle=True,
            num_workers=0,
            collate_fn=train_set.collate_fn,
        )
    from tqdm import tqdm
    for iteration, batch in enumerate(tqdm(train_data_loader)):
        print(iteration)
        imgs,lmks,msks=batch['image'].cuda(),batch['landmark'].cuda(),batch['mask'].cuda()
        half = len(imgs) // 2
        img, fake_img, real_lmk, fake_lmk, real_mask, fake_mask = imgs[:half],imgs[half:],lmks[:half],lmks[half:],msks[:half],msks[half:]
        log_prob, entropy, new_img, alt_mask, label, type_label, mag_label, mag_mask = \
        syn(img, fake_img, real_lmk, fake_lmk, real_mask, fake_mask)

        if iteration > 10:
            break
    ...