File size: 24,556 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
import torch
import math
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import yaml
from PIL import Image
import cv2
from torchvision import transforms as T
from skimage import measure
from skimage.transform import PiecewiseAffineTransform, warp
from torch.autograd import Variable
from scipy.ndimage import binary_erosion, binary_dilation
from dataset.pair_dataset import pairDataset
from dataset.utils.color_transfer import color_transfer
from dataset.utils.faceswap_utils_sladd import blendImages as alpha_blend_fea
from dataset.utils import faceswap
class Block(nn.Module):
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
super(Block, self).__init__()
if out_filters != in_filters or strides != 1:
self.skip = nn.Conv2d(in_filters, out_filters,
1, stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip = None
self.relu = nn.ReLU(inplace=True)
rep = []
filters = in_filters
if grow_first: # whether the number of filters grows first
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters, out_filters,
3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters
for i in range(reps - 1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters, filters,
3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(filters))
if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters, out_filters,
3, stride=1, padding=1, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3, strides, 1))
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x += skip
return x
class SeparableConv2d(nn.Module):
def __init__(self, c_in, c_out, ks, stride=1, padding=0, dilation=1, bias=False):
super(SeparableConv2d, self).__init__()
self.c = nn.Conv2d(c_in, c_in, ks, stride, padding, dilation, groups=c_in, bias=bias)
self.pointwise = nn.Conv2d(c_in, c_out, 1, 1, 0, 1, 1, bias=bias)
def forward(self, x):
x = self.c(x)
x = self.pointwise(x)
return x
class Xception_SLADDSyn(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, num_classes=2, num_region=7, num_type=2, num_mag=1, inc=6):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception_SLADDSyn, self).__init__()
self.num_region = num_region
self.num_type = num_type
self.num_mag = num_mag
dropout = 0.5
# Entry flow
self.iniconv = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
# self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
self.bn2 = nn.BatchNorm2d(64)
# do relu here
self.block1 = Block(
64, 128, 2, 2, start_with_relu=False, grow_first=True)
self.block2 = Block(
128, 256, 2, 2, start_with_relu=True, grow_first=True)
self.block3 = Block(
256, 728, 2, 2, start_with_relu=True, grow_first=True)
# middle flow
self.block4 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block5 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block6 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block7 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block8 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block9 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block10 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
self.block11 = Block(
728, 728, 3, 1, start_with_relu=True, grow_first=True)
# Exit flow
self.block12 = Block(
728, 1024, 2, 2, start_with_relu=True, grow_first=False)
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
self.bn3 = nn.BatchNorm2d(1536)
# do relu here
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(2048)
self.fc_region = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(2048, num_region))
self.fc_type = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(2048, num_type))
self.fc_mag = nn.Sequential(nn.Dropout(p=dropout), nn.Linear(2048, num_mag))
def fea_part1_0(self, x):
x = self.iniconv(x)
x = self.bn1(x)
x = self.relu(x)
return x
def fea_part1_1(self, x):
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
return x
def fea_part1(self, x):
x = self.iniconv(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
return x
def fea_part2(self, x):
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
return x
def fea_part3(self, x):
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
return x
def fea_part4(self, x):
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
return x
def fea_part5(self, x):
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
return x
def features(self, input):
x = self.fea_part1(input)
x = self.fea_part2(x)
x = self.fea_part3(x)
x = self.fea_part4(x)
x = self.fea_part5(x)
return x
def classifier(self, features):
x = self.relu(features)
x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
out = self.last_linear(x)
return out, x
def forward(self, input):
x = self.features(input)
x = self.relu(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
region_num = self.fc_region(x)
type_num = self.fc_type(x)
mag = self.fc_mag(x)
return region_num, type_num, mag
def mask_postprocess(mask):
def blur_mask(mask):
blur_k = 2 * np.random.randint(1, 10) - 1
# kernel = np.ones((blur_k+1, blur_k+1), np.uint8)
# mask = cv2.erode(mask, kernel)
mask = cv2.GaussianBlur(mask, (blur_k, blur_k), 0)
return mask
# random erode/dilate
prob = np.random.rand()
if prob < 0.3:
erode_k = 2 * np.random.randint(1, 10) + 1
kernel = np.ones((erode_k, erode_k), np.uint8)
mask = cv2.erode(mask, kernel)
elif prob < 0.6:
erode_k = 2 * np.random.randint(1, 10) + 1
kernel = np.ones((erode_k, erode_k), np.uint8)
mask = cv2.dilate(mask, kernel)
# random blur
if np.random.rand() < 0.9:
mask = blur_mask(mask)
return mask
def xception(num_region=7, num_type=2, num_mag=1, pretrained='imagenet', inc=6):
model = Xception_SLADDSyn(num_region=num_region, num_type=num_type, num_mag=num_mag, inc=inc)
return model
class TransferModel(nn.Module):
"""
Simple transfer learning model that takes an imagenet pretrained model with
a fc layer as base model and retrains a new fc layer for num_out_classes
"""
def __init__(self, config, num_region=7, num_type=2, num_mag=1, return_fea=False, inc=6):
super(TransferModel, self).__init__()
self.return_fea = return_fea
def return_pytorch04_xception(pretrained=True):
# Raises warning "src not broadcastable to dst" but thats fine
model = xception(num_region=num_region, num_type=num_type, num_mag=num_mag, inc=inc, pretrained=False)
if pretrained:
# Load model in torch 0.4+
# model.fc = model.last_linear
# del model.last_linear
state_dict = torch.load(config['pretrained'])
print('Loaded pretrained model (ImageNet)....')
for name, weights in state_dict.items():
if 'pointwise' in name:
state_dict[name] = weights.unsqueeze(
-1).unsqueeze(-1)
model.load_state_dict(state_dict, strict=False)
# model.last_linear = model.fc
# del model.fc
return model
self.model = return_pytorch04_xception()
# Replace fc
if inc != 3:
self.model.iniconv = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
nn.init.xavier_normal(self.model.iniconv.weight.data, gain=0.02)
def set_trainable_up_to(self, boolean=False, layername="Conv2d_4a_3x3"):
"""
Freezes all layers below a specific layer and sets the following layers
to true if boolean else only the fully connected final layer
:param boolean:
:param layername: depends on lib, for inception e.g. Conv2d_4a_3x3
:return:
"""
# Stage-1: freeze all the layers
if layername is None:
for i, param in self.model.named_parameters():
param.requires_grad = True
return
else:
for i, param in self.model.named_parameters():
param.requires_grad = False
if boolean:
# Make all layers following the layername layer trainable
ct = []
found = False
for name, child in self.model.named_children():
if layername in ct:
found = True
for params in child.parameters():
params.requires_grad = True
ct.append(name)
if not found:
raise NotImplementedError('Layer not found, cant finetune!'.format(
layername))
else:
# Make fc trainable
for param in self.model.last_linear.parameters():
param.requires_grad = True
def forward(self, x):
region_num, type_num, mag = self.model(x)
return region_num, type_num, mag
def features(self, x):
x = self.model.features(x)
return x
def classifier(self, x):
out, x = self.model.classifier(x)
return out, x
def dist(p1, p2):
return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
def generate_random_mask(mask, res=256):
randwl = np.random.randint(10, 60)
randwr = np.random.randint(10, 60)
randhu = np.random.randint(10, 60)
randhd = np.random.randint(10, 60)
newmask = np.zeros(mask.shape)
mask = np.where(mask > 0.1, 1, 0)
props = measure.regionprops(mask)
if len(props) == 0:
return newmask
center_x, center_y = props[0].centroid
center_x = int(round(center_x))
center_y = int(round(center_y))
newmask[max(center_x - randwl, 0):min(center_x + randwr, res - 1),
max(center_y - randhu, 0):min(center_x + randhd, res - 1)] = 1
newmask *= mask
return newmask
def random_deform(mask, nrows, ncols, mean=0, std=10):
h, w = mask.shape[:2]
rows = np.linspace(0, h - 1, nrows).astype(np.int32)
cols = np.linspace(0, w - 1, ncols).astype(np.int32)
rows += np.random.normal(mean, std, size=rows.shape).astype(np.int32)
rows += np.random.normal(mean, std, size=cols.shape).astype(np.int32)
rows, cols = np.meshgrid(rows, cols)
anchors = np.vstack([rows.flat, cols.flat]).T
assert anchors.shape[1] == 2 and anchors.shape[0] == ncols * nrows
deformed = anchors + np.random.normal(mean, std, size=anchors.shape)
np.clip(deformed[:, 0], 0, h - 1, deformed[:, 0])
np.clip(deformed[:, 1], 0, w - 1, deformed[:, 1])
trans = PiecewiseAffineTransform()
trans.estimate(anchors, deformed.astype(np.int32))
warped = warp(mask, trans)
warped *= mask
blured = cv2.GaussianBlur(warped.astype(float), (5, 5), 3)
return blured
def get_five_key(landmarks_68):
# get the five key points by using the landmarks
leye_center = (landmarks_68[36] + landmarks_68[39]) * 0.5
reye_center = (landmarks_68[42] + landmarks_68[45]) * 0.5
nose = landmarks_68[33]
lmouth = landmarks_68[48]
rmouth = landmarks_68[54]
leye_left = landmarks_68[36]
leye_right = landmarks_68[39]
reye_left = landmarks_68[42]
reye_right = landmarks_68[45]
out = [tuple(x.astype('int32')) for x in [
leye_center, reye_center, nose, lmouth, rmouth, leye_left, leye_right, reye_left, reye_right
]]
return out
def remove_eyes(image, landmarks, opt):
##l: left eye; r: right eye, b: both eye
if opt == 'l':
(x1, y1), (x2, y2) = landmarks[5:7]
elif opt == 'r':
(x1, y1), (x2, y2) = landmarks[7:9]
elif opt == 'b':
(x1, y1), (x2, y2) = landmarks[:2]
else:
print('wrong region')
mask = np.zeros_like(image[..., 0])
line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
w = dist((x1, y1), (x2, y2))
dilation = int(w // 4)
if opt != 'b':
dilation *= 4
line = binary_dilation(line, iterations=dilation)
return line
def remove_nose(image, landmarks):
(x1, y1), (x2, y2) = landmarks[:2]
x3, y3 = landmarks[2]
mask = np.zeros_like(image[..., 0])
x4 = int((x1 + x2) / 2)
y4 = int((y1 + y2) / 2)
line = cv2.line(mask, (x3, y3), (x4, y4), color=(1), thickness=2)
w = dist((x1, y1), (x2, y2))
dilation = int(w // 4)
line = binary_dilation(line, iterations=dilation)
return line
def remove_mouth(image, landmarks):
(x1, y1), (x2, y2) = landmarks[3:5]
mask = np.zeros_like(image[..., 0])
line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2)
w = dist((x1, y1), (x2, y2))
dilation = int(w // 3)
line = binary_dilation(line, iterations=dilation)
return line
def blend_fake_to_real(realimg, real_lmk, fakeimg, fakemask, fake_lmk, deformed_fakemask, type, mag):
# source: fake image
# target: real image
realimg = ((realimg + 1) / 2 * 255).astype(np.uint8)
fakeimg = ((fakeimg + 1) / 2 * 255).astype(np.uint8)
H, W, C = realimg.shape
#由于我们已经做过对齐,这里可以直接用。原代码是做了对齐操作的. 这个src就是fake
aligned_src = fakeimg
src_mask = deformed_fakemask
src_mask = src_mask > 0 # (H, W)
tgt_mask = np.asarray(src_mask, dtype=np.uint8)
tgt_mask = mask_postprocess(tgt_mask)
ct_modes = ['rct-m', 'rct-fs', 'avg-align', 'faceswap']
mode_idx = np.random.randint(len(ct_modes))
mode = ct_modes[mode_idx]
if mode != 'faceswap':
c_mask = tgt_mask / 255.
c_mask[c_mask > 0] = 1
if len(c_mask.shape) < 3:
c_mask = np.expand_dims(c_mask, 2)
src_crop = color_transfer(mode, aligned_src, realimg, c_mask)
else:
c_mask = tgt_mask.copy()
c_mask[c_mask > 0] = 255
masked_tgt = faceswap.apply_mask(realimg, c_mask)
masked_src = faceswap.apply_mask(aligned_src, c_mask)
src_crop = faceswap.correct_colours(masked_tgt, masked_src, np.array(real_lmk))
if tgt_mask.mean() < 0.005 or src_crop.max() == 0:
out_blend = realimg
else:
if type == 0:
out_blend, a_mask = alpha_blend_fea(src_crop, realimg, tgt_mask,
featherAmount=0.2 * np.random.rand())
elif type == 1:
b_mask = (tgt_mask * 255).astype(np.uint8)
l, t, w, h = cv2.boundingRect(b_mask)
center = (int(l + w / 2), int(t + h / 2))
out_blend = cv2.seamlessClone(src_crop, realimg, b_mask, center, cv2.NORMAL_CLONE)
else:
out_blend = copy_fake_to_real(realimg, src_crop, tgt_mask, mag)
return out_blend, tgt_mask
def copy_fake_to_real(realimg, fakeimg, mask, mag):
mask = np.expand_dims(mask, 2)
newimg = fakeimg * mask * mag + realimg * (1 - mask) + realimg * mask * (1 - mag)
return newimg
class synthesizer(nn.Module):
def __init__(self,config):
super(synthesizer, self).__init__()
self.netG = TransferModel(config=config,num_region=10, num_type=4, num_mag=1, inc=6)
normalize = T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
self.transforms = T.Compose([T.ToTensor(), normalize])
def parse(self, img, reg, real_lmk, fakemask):
five_key = get_five_key(real_lmk)
if reg == 0:
mask = remove_eyes(img, five_key, 'l')
elif reg == 1:
mask = remove_eyes(img, five_key, 'r')
elif reg == 2:
mask = remove_eyes(img, five_key, 'b')
elif reg == 3:
mask = remove_nose(img, five_key)
elif reg == 4:
mask = remove_mouth(img, five_key)
elif reg == 5:
mask = remove_nose(img, five_key) + remove_eyes(img, five_key, 'l')
elif reg == 6:
mask = remove_nose(img, five_key) + remove_eyes(img, five_key, 'r')
elif reg == 7:
mask = remove_nose(img, five_key) + remove_eyes(img, five_key, 'b')
elif reg == 8:
mask = remove_nose(img, five_key) + remove_mouth(img, five_key)
elif reg == 9:
mask = remove_eyes(img, five_key, 'b') + remove_nose(img, five_key) + remove_mouth(img, five_key)
else:
mask = generate_random_mask(fakemask)
mask = random_deform(mask, 5, 5)
return mask * 1.0
def get_variable(self, inputs, cuda=False, **kwargs):
if type(inputs) in [list, np.ndarray]:
inputs = torch.Tensor(inputs)
if cuda:
out = Variable(inputs.cuda(), **kwargs)
else:
out = Variable(inputs, **kwargs)
return out
def calculate(self, logits):
if logits.shape[1] != 1:
probs = F.softmax(logits, dim=-1)
log_prob = F.log_softmax(logits, dim=-1)
entropy = -(log_prob * probs).sum(1, keepdim=False)
action = probs.multinomial(num_samples=1).data
selected_log_prob = log_prob.gather(1, self.get_variable(action, requires_grad=False))
else:
probs = torch.sigmoid(logits)
log_prob = torch.log(torch.sigmoid(logits))
entropy = -(log_prob * probs).sum(1, keepdim=False)
action = probs
selected_log_prob = log_prob
return entropy, selected_log_prob[:, 0], action[:, 0]
def forward(self, img, fake_img, real_lmk, fake_lmk, real_mask, fake_mask, label=None):
# based on pair_dataset, here, img always is real, fake_img always is fake
region_num, type_num, mag = self.netG(torch.cat((img, fake_img), 1))
reg_etp, reg_log_prob, reg = self.calculate(region_num)
type_etp, type_log_prob, type = self.calculate(type_num)
mag_etp, mag_log_prob, mag = self.calculate(mag)
entropy = reg_etp + type_etp + mag_etp
log_prob = reg_log_prob + type_log_prob + mag_log_prob
newlabel = []
typelabel = []
maglabel = []
magmask = []
#####################
alt_img = torch.ones(img.shape)
alt_mask = np.zeros((img.shape[0], 16, 16))
if label is None:
label=np.zeros(img.shape[0])
for i in range(img.shape[0]):
imgcp = np.transpose(img[i].cpu().numpy(), (1, 2, 0)).copy()
fake_imgcp = np.transpose(fake_img[i].cpu().numpy(), (1, 2, 0)).copy()
##only work for real imgs and not do-nothing choice
if label[i] == 0 and type[i] != 3:
mask = self.parse(fake_imgcp, reg[i], fake_lmk[i].cpu().numpy(),
fake_mask[i].cpu().numpy())
newimg, newmask = blend_fake_to_real(imgcp, real_lmk[i].cpu().numpy(),
fake_imgcp, fake_mask.cpu().numpy(),
fake_lmk[i].cpu().numpy(), mask, type[i],
mag[i].detach().cpu().numpy())
newimg = self.transforms(Image.fromarray(np.array(newimg, dtype=np.uint8)))
newlabel.append(int(1))
typelabel.append(int(type[i].cpu().numpy()))
if type[i] == 2:
magmask.append(int(1))
else:
magmask.append(int(0))
else:
newimg = self.transforms(Image.fromarray(np.array((imgcp + 1) / 2 * 255, dtype=np.uint8)))
newmask =real_mask[i].squeeze(2)[:,:,0].cpu().numpy()
newlabel.append(int(label[i]))
if label[i] == 0:
typelabel.append(int(3))
else:
typelabel.append(int(4))
magmask.append(int(0))
if newmask is None:
newmask = np.zeros((16, 16))
newmask = cv2.resize(newmask, (16, 16), interpolation=cv2.INTER_CUBIC)
alt_img[i] = newimg
alt_mask[i] = newmask
alt_mask = torch.from_numpy(alt_mask.astype(np.float32)).unsqueeze(1)
newlabel = torch.tensor(newlabel)
typelabel = torch.tensor(typelabel)
maglabel = mag
magmask = torch.tensor(magmask)
return log_prob, entropy, alt_img.detach(), alt_mask.detach(), \
newlabel.detach(), typelabel.detach(), maglabel.detach(), magmask.detach()
if __name__ == '__main__':
with open(r'H:\code\DeepfakeBench\training\config\detector\sladd_xception.yaml', 'r') as f:
config = yaml.safe_load(f)
syn=synthesizer(config=config).cuda()
config['data_manner'] = 'lmdb'
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
config['sample_size']=256
config['with_mask']=True
config['with_landmark']=True
config['use_data_augmentation']=True
config['data_aug']['rotate_prob']=1
train_set = pairDataset(config=config, mode='train')
train_data_loader = \
torch.utils.data.DataLoader(
dataset=train_set,
batch_size=config['train_batchSize'],
shuffle=True,
num_workers=0,
collate_fn=train_set.collate_fn,
)
from tqdm import tqdm
for iteration, batch in enumerate(tqdm(train_data_loader)):
print(iteration)
imgs,lmks,msks=batch['image'].cuda(),batch['landmark'].cuda(),batch['mask'].cuda()
half = len(imgs) // 2
img, fake_img, real_lmk, fake_lmk, real_mask, fake_mask = imgs[:half],imgs[half:],lmks[:half],lmks[half:],msks[:half],msks[half:]
log_prob, entropy, new_img, alt_mask, label, type_label, mag_label, mag_mask = \
syn(img, fake_img, real_lmk, fake_lmk, real_mask, fake_mask)
if iteration > 10:
break
... |