File size: 6,591 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# --------------------------------------------------------
# Two Stream Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Hangyan Jiang
# --------------------------------------------------------
# Testing part
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import argparse
class SRMConv2d(nn.Module):
def __init__(self, learnable=False):
super(SRMConv2d, self).__init__()
self.weight = nn.Parameter(torch.Tensor(30, 3, 5, 5),
requires_grad=learnable)
self.bias = nn.Parameter(torch.Tensor(30), \
requires_grad=learnable)
self.reset_parameters()
def reset_parameters(self):
SRM_npy = np.load('lib/component/SRM_Kernels.npy')
# print(SRM_npy.shape)
SRM_npy = np.repeat(SRM_npy, 3, axis=1)
# print(SRM_npy.shape)
self.weight.data.numpy()[:] = SRM_npy
self.bias.data.zero_()
def forward(self, input):
return F.conv2d(input, self.weight, stride=1, padding=2)
class SRMConv2d_simple(nn.Module):
def __init__(self, inc=3, learnable=False):
super(SRMConv2d_simple, self).__init__()
self.truc = nn.Hardtanh(-3, 3)
kernel = self._build_kernel(inc) # (3,3,5,5)
self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
# self.hor_kernel = self._build_kernel().transpose(0,1,3,2)
def forward(self, x):
'''
x: imgs (Batch, H, W, 3)
'''
out = F.conv2d(x, self.kernel, stride=1, padding=2)
out = self.truc(out)
return out
def _build_kernel(self, inc):
# filter1: KB
filter1 = [[0, 0, 0, 0, 0],
[0, -1, 2, -1, 0],
[0, 2, -4, 2, 0],
[0, -1, 2, -1, 0],
[0, 0, 0, 0, 0]]
# filter2:KV
filter2 = [[-1, 2, -2, 2, -1],
[2, -6, 8, -6, 2],
[-2, 8, -12, 8, -2],
[2, -6, 8, -6, 2],
[-1, 2, -2, 2, -1]]
# # filter3:hor 2rd
filter3 = [[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 1, -2, 1, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
# filter3:hor 2rd
# filter3 = [[0, 0, 0, 0, 0],
# [0, 0, 1, 0, 0],
# [0, 1, -4, 1, 0],
# [0, 0, 1, 0, 0],
# [0, 0, 0, 0, 0]]
filter1 = np.asarray(filter1, dtype=float) / 4.
filter2 = np.asarray(filter2, dtype=float) / 12.
filter3 = np.asarray(filter3, dtype=float) / 2.
# statck the filters
filters = [[filter1],#, filter1, filter1],
[filter2],#, filter2, filter2],
[filter3]]#, filter3, filter3]] # (3,3,5,5)
filters = np.array(filters)
filters = np.repeat(filters, inc, axis=1)
filters = torch.FloatTensor(filters) # (3,3,5,5)
return filters
class SRMConv2d_Separate(nn.Module):
def __init__(self, inc, outc, learnable=False):
super(SRMConv2d_Separate, self).__init__()
self.inc = inc
self.truc = nn.Hardtanh(-3, 3)
kernel = self._build_kernel(inc) # (3,3,5,5)
self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
# self.hor_kernel = self._build_kernel().transpose(0,1,3,2)
self.out_conv = nn.Sequential(
nn.Conv2d(3*inc, outc, 1, 1, 0, 1, 1, bias=False),
nn.BatchNorm2d(outc),
nn.ReLU(inplace=True)
)
for ly in self.out_conv.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
def forward(self, x):
'''
x: imgs (Batch,inc, H, W)
kernel: (outc,inc,kH,kW)
'''
out = F.conv2d(x, self.kernel, stride=1, padding=2, groups=self.inc)
out = self.truc(out)
out = self.out_conv(out)
return out
def _build_kernel(self, inc):
# filter1: KB
filter1 = [[0, 0, 0, 0, 0],
[0, -1, 2, -1, 0],
[0, 2, -4, 2, 0],
[0, -1, 2, -1, 0],
[0, 0, 0, 0, 0]]
# filter2:KV
filter2 = [[-1, 2, -2, 2, -1],
[2, -6, 8, -6, 2],
[-2, 8, -12, 8, -2],
[2, -6, 8, -6, 2],
[-1, 2, -2, 2, -1]]
# # filter3:hor 2rd
filter3 = [[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 1, -2, 1, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
# filter3:hor 2rd
# filter3 = [[0, 0, 0, 0, 0],
# [0, 0, 1, 0, 0],
# [0, 1, -4, 1, 0],
# [0, 0, 1, 0, 0],
# [0, 0, 0, 0, 0]]
filter1 = np.asarray(filter1, dtype=float) / 4.
filter2 = np.asarray(filter2, dtype=float) / 12.
filter3 = np.asarray(filter3, dtype=float) / 2.
# statck the filters
filters = [[filter1],#, filter1, filter1],
[filter2],#, filter2, filter2],
[filter3]]#, filter3, filter3]] # (3,3,5,5) => (3,1,5,5)
filters = np.array(filters)
# filters = np.repeat(filters, inc, axis=1)
filters = np.repeat(filters, inc, axis=0)
filters = torch.FloatTensor(filters) # (3*inc,1,5,5)
# print(filters.size())
return filters
if __name__ == "__main__":
im = cv2.imread('E:\SRM\component\FF-F2F_0.png')
im_ten = im/255*2-1
im_ten = torch.from_numpy(im_ten).unsqueeze(0).permute(0, 3, 1, 2).float()
# im_ten = torch.cat((im_ten, im_ten), dim=1)
srm_conv = SRMConv2d_simple(inc=3)
srm_conv1 = SRMConv2d_Separate(inc=3, outc=3)
srm = srm_conv(im_ten)
print(srm.size())
def t2im(t):
# t = (t+1)/2*255
t = t*255
im = t.squeeze().detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8)
return im
cv2.imshow('ori', im)
cv2.imshow('srm', t2im(srm))
cv2.imshow('srm1', t2im(srm_conv1(im_ten)))
# cv2.imshow('srm2', t2im(srm_conv(srm)))
cv2.waitKey()
|