File size: 6,591 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# --------------------------------------------------------
# Two Stream Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Hangyan Jiang
# --------------------------------------------------------

# Testing part
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

import argparse


class SRMConv2d(nn.Module):

    def __init__(self, learnable=False):
        super(SRMConv2d, self).__init__()
        self.weight = nn.Parameter(torch.Tensor(30, 3, 5, 5), 
                                requires_grad=learnable)
        self.bias = nn.Parameter(torch.Tensor(30), \
                              requires_grad=learnable)
        self.reset_parameters()

    def reset_parameters(self):
        SRM_npy = np.load('lib/component/SRM_Kernels.npy')
        # print(SRM_npy.shape)
        SRM_npy = np.repeat(SRM_npy, 3, axis=1)
        # print(SRM_npy.shape)
        self.weight.data.numpy()[:] = SRM_npy
        self.bias.data.zero_()

    def forward(self, input):
        return F.conv2d(input, self.weight, stride=1, padding=2)

     

class SRMConv2d_simple(nn.Module):
    
    def __init__(self, inc=3, learnable=False):
        super(SRMConv2d_simple, self).__init__()
        self.truc = nn.Hardtanh(-3, 3)
        kernel = self._build_kernel(inc)  # (3,3,5,5)
        self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
        # self.hor_kernel = self._build_kernel().transpose(0,1,3,2)

    def forward(self, x):
        '''

        x: imgs (Batch, H, W, 3)

        '''
        out = F.conv2d(x, self.kernel, stride=1, padding=2)
        out = self.truc(out)

        return out

    def _build_kernel(self, inc):
        # filter1: KB
        filter1 = [[0, 0, 0, 0, 0],
                   [0, -1, 2, -1, 0],
                   [0, 2, -4, 2, 0],
                   [0, -1, 2, -1, 0],
                   [0, 0, 0, 0, 0]]
        # filter2:KV
        filter2 = [[-1, 2, -2, 2, -1],
                   [2, -6, 8, -6, 2],
                   [-2, 8, -12, 8, -2],
                   [2, -6, 8, -6, 2],
                   [-1, 2, -2, 2, -1]]
        # # filter3:hor 2rd
        filter3 = [[0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0],
                  [0, 1, -2, 1, 0],
                  [0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0]]
        # filter3:hor 2rd
        # filter3 = [[0, 0, 0, 0, 0],
        #            [0, 0, 1, 0, 0],
        #            [0, 1, -4, 1, 0],
        #            [0, 0, 1, 0, 0],
        #            [0, 0, 0, 0, 0]]

        filter1 = np.asarray(filter1, dtype=float) / 4.
        filter2 = np.asarray(filter2, dtype=float) / 12.
        filter3 = np.asarray(filter3, dtype=float) / 2.
        # statck the filters
        filters = [[filter1],#, filter1, filter1],
                   [filter2],#, filter2, filter2],
                   [filter3]]#, filter3, filter3]]  # (3,3,5,5)
        filters = np.array(filters)
        filters = np.repeat(filters, inc, axis=1)
        filters = torch.FloatTensor(filters)    # (3,3,5,5)
        return filters

class SRMConv2d_Separate(nn.Module):
    
    def __init__(self, inc, outc, learnable=False):
        super(SRMConv2d_Separate, self).__init__()
        self.inc = inc
        self.truc = nn.Hardtanh(-3, 3)
        kernel = self._build_kernel(inc)  # (3,3,5,5)
        self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
        # self.hor_kernel = self._build_kernel().transpose(0,1,3,2)
        self.out_conv = nn.Sequential(
            nn.Conv2d(3*inc, outc, 1, 1, 0, 1, 1, bias=False),
            nn.BatchNorm2d(outc),
            nn.ReLU(inplace=True)
        )

        for ly in self.out_conv.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)

    def forward(self, x):
        '''

        x: imgs (Batch,inc, H, W)

        kernel: (outc,inc,kH,kW)

        '''
        out = F.conv2d(x, self.kernel, stride=1, padding=2, groups=self.inc)
        out = self.truc(out)
        out = self.out_conv(out)

        return out

    def _build_kernel(self, inc):
        # filter1: KB
        filter1 = [[0, 0, 0, 0, 0],
                   [0, -1, 2, -1, 0],
                   [0, 2, -4, 2, 0],
                   [0, -1, 2, -1, 0],
                   [0, 0, 0, 0, 0]]
        # filter2:KV
        filter2 = [[-1, 2, -2, 2, -1],
                   [2, -6, 8, -6, 2],
                   [-2, 8, -12, 8, -2],
                   [2, -6, 8, -6, 2],
                   [-1, 2, -2, 2, -1]]
        # # filter3:hor 2rd
        filter3 = [[0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0],
                  [0, 1, -2, 1, 0],
                  [0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0]]
        # filter3:hor 2rd
        # filter3 = [[0, 0, 0, 0, 0],
        #            [0, 0, 1, 0, 0],
        #            [0, 1, -4, 1, 0],
        #            [0, 0, 1, 0, 0],
        #            [0, 0, 0, 0, 0]]

        filter1 = np.asarray(filter1, dtype=float) / 4.
        filter2 = np.asarray(filter2, dtype=float) / 12.
        filter3 = np.asarray(filter3, dtype=float) / 2.
        # statck the filters
        filters = [[filter1],#, filter1, filter1],
                   [filter2],#, filter2, filter2],
                   [filter3]]#, filter3, filter3]]  # (3,3,5,5)  =>  (3,1,5,5)
        filters = np.array(filters)
        # filters = np.repeat(filters, inc, axis=1)
        filters = np.repeat(filters, inc, axis=0)
        filters = torch.FloatTensor(filters)    # (3*inc,1,5,5)
        # print(filters.size())
        return filters


if __name__ == "__main__":
    im = cv2.imread('E:\SRM\component\FF-F2F_0.png')
    im_ten = im/255*2-1
    im_ten = torch.from_numpy(im_ten).unsqueeze(0).permute(0, 3, 1, 2).float()
    # im_ten = torch.cat((im_ten, im_ten), dim=1)
    srm_conv = SRMConv2d_simple(inc=3)
    srm_conv1 = SRMConv2d_Separate(inc=3, outc=3)

    srm = srm_conv(im_ten)
    print(srm.size())

    def t2im(t):

        # t = (t+1)/2*255
        t = t*255
        im = t.squeeze().detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8)
        return im

    cv2.imshow('ori', im)
    cv2.imshow('srm', t2im(srm))
    cv2.imshow('srm1', t2im(srm_conv1(im_ten)))
    # cv2.imshow('srm2', t2im(srm_conv(srm)))

    cv2.waitKey()