File size: 6,228 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
from sklearn import metrics
from collections import defaultdict
import torch
import torch.nn as nn


def get_accracy(output, label):
    _, prediction = torch.max(output, 1)    # argmax
    correct = (prediction == label).sum().item()
    accuracy = correct / prediction.size(0)
    return accuracy


def get_prediction(output, label):
    prob = nn.functional.softmax(output, dim=1)[:, 1]
    prob = prob.view(prob.size(0), 1)
    label = label.view(label.size(0), 1)
    #print(prob.size(), label.size())
    datas = torch.cat((prob, label.float()), dim=1)
    return datas


def calculate_metrics_for_train(label, output):
    if output.size(1) == 2:
        prob = torch.softmax(output, dim=1)[:, 1]
    else:
        prob = output

    # Accuracy
    _, prediction = torch.max(output, 1)
    correct = (prediction == label).sum().item()
    accuracy = correct / prediction.size(0)

    # Average Precision
    y_true = label.cpu().detach().numpy()
    y_pred = prob.cpu().detach().numpy()
    ap = metrics.average_precision_score(y_true, y_pred)

    # AUC and EER
    try:
        fpr, tpr, thresholds = metrics.roc_curve(label.squeeze().cpu().numpy(),
                                                 prob.squeeze().cpu().numpy(),
                                                 pos_label=1)
    except:
        # for the case when we only have one sample
        return None, None, accuracy, ap

    if np.isnan(fpr[0]) or np.isnan(tpr[0]):
        # for the case when all the samples within a batch is fake/real
        auc, eer = None, None
    else:
        auc = metrics.auc(fpr, tpr)
        fnr = 1 - tpr
        eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]

    return auc, eer, accuracy, ap


# ------------ compute average metrics of batches---------------------
class Metrics_batch():
    def __init__(self):
        self.tprs = []
        self.mean_fpr = np.linspace(0, 1, 100)
        self.aucs = []
        self.eers = []
        self.aps = []

        self.correct = 0
        self.total = 0
        self.losses = []

    def update(self, label, output):
        acc = self._update_acc(label, output)
        if output.size(1) == 2:
            prob = torch.softmax(output, dim=1)[:, 1]
        else:
            prob = output
        #label = 1-label
        #prob = torch.softmax(output, dim=1)[:, 1]
        auc, eer = self._update_auc(label, prob)
        ap = self._update_ap(label, prob)

        return acc, auc, eer, ap

    def _update_auc(self, lab, prob):
        fpr, tpr, thresholds = metrics.roc_curve(lab.squeeze().cpu().numpy(),
                                                 prob.squeeze().cpu().numpy(),
                                                 pos_label=1)
        if np.isnan(fpr[0]) or np.isnan(tpr[0]):
            return -1, -1

        auc = metrics.auc(fpr, tpr)
        interp_tpr = np.interp(self.mean_fpr, fpr, tpr)
        interp_tpr[0] = 0.0
        self.tprs.append(interp_tpr)
        self.aucs.append(auc)

        # return auc

        # EER
        fnr = 1 - tpr
        eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
        self.eers.append(eer)

        return auc, eer

    def _update_acc(self, lab, output):
        _, prediction = torch.max(output, 1)    # argmax
        correct = (prediction == lab).sum().item()
        accuracy = correct / prediction.size(0)
        # self.accs.append(accuracy)
        self.correct = self.correct+correct
        self.total = self.total+lab.size(0)
        return accuracy

    def _update_ap(self, label, prob):
        y_true = label.cpu().detach().numpy()
        y_pred = prob.cpu().detach().numpy()
        ap = metrics.average_precision_score(y_true,y_pred)
        self.aps.append(ap)

        return np.mean(ap)

    def get_mean_metrics(self):
        mean_acc, std_acc = self.correct/self.total, 0
        mean_auc, std_auc = self._mean_auc()
        mean_err, std_err = np.mean(self.eers), np.std(self.eers)
        mean_ap, std_ap = np.mean(self.aps), np.std(self.aps)
        
        return {'acc':mean_acc, 'auc':mean_auc, 'eer':mean_err, 'ap':mean_ap}

    def _mean_auc(self):
        mean_tpr = np.mean(self.tprs, axis=0)
        mean_tpr[-1] = 1.0
        mean_auc = metrics.auc(self.mean_fpr, mean_tpr)
        std_auc = np.std(self.aucs)
        return mean_auc, std_auc

    def clear(self):
        self.tprs.clear()
        self.aucs.clear()
        # self.accs.clear()
        self.correct=0
        self.total=0
        self.eers.clear()
        self.aps.clear()
        self.losses.clear()


# ------------ compute average metrics of all data ---------------------
class Metrics_all():
    def __init__(self):
        self.probs = []
        self.labels = []
        self.correct = 0
        self.total = 0

    def store(self, label, output):
        prob = torch.softmax(output, dim=1)[:, 1]
        _, prediction = torch.max(output, 1)    # argmax
        correct = (prediction == label).sum().item()
        self.correct += correct
        self.total += label.size(0)
        self.labels.append(label.squeeze().cpu().numpy())
        self.probs.append(prob.squeeze().cpu().numpy())

    def get_metrics(self):
        y_pred = np.concatenate(self.probs)
        y_true = np.concatenate(self.labels)
        # auc
        fpr, tpr, thresholds = metrics.roc_curve(y_true,y_pred,pos_label=1)
        auc = metrics.auc(fpr, tpr)
        # eer
        fnr = 1 - tpr
        eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
        # ap
        ap = metrics.average_precision_score(y_true,y_pred)
        # acc
        acc = self.correct / self.total
        return {'acc':acc, 'auc':auc, 'eer':eer, 'ap':ap}

    def clear(self):
        self.probs.clear()
        self.labels.clear()
        self.correct = 0
        self.total = 0


# only used to record a series of scalar value
class Recorder:
    def __init__(self):
        self.sum = 0
        self.num = 0
    def update(self, item, num=1):
        if item is not None:
            self.sum += item * num
            self.num += num
    def average(self):
        if self.num == 0:
            return None
        return self.sum/self.num
    def clear(self):
        self.sum = 0
        self.num = 0