File size: 12,787 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
from collections import namedtuple
import torch
import torch.nn as nn
from torch.nn import Dropout
from torch.nn import MaxPool2d
from torch.nn import Sequential
from torch.nn import Conv2d, Linear
from torch.nn import BatchNorm1d, BatchNorm2d
from torch.nn import ReLU, Sigmoid
from torch.nn import Module
from torch.nn import PReLU
import os
def build_model(model_name='ir_50'):
if model_name == 'ir_101':
return IR_101(input_size=(112,112))
elif model_name == 'ir_50':
return IR_50(input_size=(112,112))
elif model_name == 'ir_se_50':
return IR_SE_50(input_size=(112,112))
elif model_name == 'ir_34':
return IR_34(input_size=(112,112))
elif model_name == 'ir_18':
return IR_18(input_size=(112,112))
else:
raise ValueError('not a correct model name', model_name)
def initialize_weights(modules):
""" Weight initilize, conv2d and linear is initialized with kaiming_normal
"""
for m in modules:
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight,
mode='fan_out',
nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight,
mode='fan_out',
nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
class Flatten(Module):
""" Flat tensor
"""
def forward(self, input):
return input.view(input.size(0), -1)
class LinearBlock(Module):
""" Convolution block without no-linear activation layer
"""
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(LinearBlock, self).__init__()
self.conv = Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False)
self.bn = BatchNorm2d(out_c)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class GNAP(Module):
""" Global Norm-Aware Pooling block
"""
def __init__(self, in_c):
super(GNAP, self).__init__()
self.bn1 = BatchNorm2d(in_c, affine=False)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.bn2 = BatchNorm1d(in_c, affine=False)
def forward(self, x):
x = self.bn1(x)
x_norm = torch.norm(x, 2, 1, True)
x_norm_mean = torch.mean(x_norm)
weight = x_norm_mean / x_norm
x = x * weight
x = self.pool(x)
x = x.view(x.shape[0], -1)
feature = self.bn2(x)
return feature
class GDC(Module):
""" Global Depthwise Convolution block
"""
def __init__(self, in_c, embedding_size):
super(GDC, self).__init__()
self.conv_6_dw = LinearBlock(in_c, in_c,
groups=in_c,
kernel=(7, 7),
stride=(1, 1),
padding=(0, 0))
self.conv_6_flatten = Flatten()
self.linear = Linear(in_c, embedding_size, bias=False)
self.bn = BatchNorm1d(embedding_size, affine=False)
def forward(self, x):
x = self.conv_6_dw(x)
x = self.conv_6_flatten(x)
x = self.linear(x)
x = self.bn(x)
return x
class SEModule(Module):
""" SE block
"""
def __init__(self, channels, reduction):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = Conv2d(channels, channels // reduction,
kernel_size=1, padding=0, bias=False)
nn.init.xavier_uniform_(self.fc1.weight.data)
self.relu = ReLU(inplace=True)
self.fc2 = Conv2d(channels // reduction, channels,
kernel_size=1, padding=0, bias=False)
self.sigmoid = Sigmoid()
def forward(self, x):
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x
class BasicBlockIR(Module):
""" BasicBlock for IRNet
"""
def __init__(self, in_channel, depth, stride):
super(BasicBlockIR, self).__init__()
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
BatchNorm2d(depth),
PReLU(depth),
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
BatchNorm2d(depth))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class BottleneckIR(Module):
""" BasicBlock with bottleneck for IRNet
"""
def __init__(self, in_channel, depth, stride):
super(BottleneckIR, self).__init__()
reduction_channel = depth // 4
if in_channel == depth:
self.shortcut_layer = MaxPool2d(1, stride)
else:
self.shortcut_layer = Sequential(
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
BatchNorm2d(depth))
self.res_layer = Sequential(
BatchNorm2d(in_channel),
Conv2d(in_channel, reduction_channel, (1, 1), (1, 1), 0, bias=False),
BatchNorm2d(reduction_channel),
PReLU(reduction_channel),
Conv2d(reduction_channel, reduction_channel, (3, 3), (1, 1), 1, bias=False),
BatchNorm2d(reduction_channel),
PReLU(reduction_channel),
Conv2d(reduction_channel, depth, (1, 1), stride, 0, bias=False),
BatchNorm2d(depth))
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class BasicBlockIRSE(BasicBlockIR):
def __init__(self, in_channel, depth, stride):
super(BasicBlockIRSE, self).__init__(in_channel, depth, stride)
self.res_layer.add_module("se_block", SEModule(depth, 16))
class BottleneckIRSE(BottleneckIR):
def __init__(self, in_channel, depth, stride):
super(BottleneckIRSE, self).__init__(in_channel, depth, stride)
self.res_layer.add_module("se_block", SEModule(depth, 16))
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
'''A named tuple describing a ResNet block.'''
def get_block(in_channel, depth, num_units, stride=2):
return [Bottleneck(in_channel, depth, stride)] +\
[Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
def get_blocks(num_layers):
if num_layers == 18:
blocks = [
get_block(in_channel=64, depth=64, num_units=2),
get_block(in_channel=64, depth=128, num_units=2),
get_block(in_channel=128, depth=256, num_units=2),
get_block(in_channel=256, depth=512, num_units=2)
]
elif num_layers == 34:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=6),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 50:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=4),
get_block(in_channel=128, depth=256, num_units=14),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 100:
blocks = [
get_block(in_channel=64, depth=64, num_units=3),
get_block(in_channel=64, depth=128, num_units=13),
get_block(in_channel=128, depth=256, num_units=30),
get_block(in_channel=256, depth=512, num_units=3)
]
elif num_layers == 152:
blocks = [
get_block(in_channel=64, depth=256, num_units=3),
get_block(in_channel=256, depth=512, num_units=8),
get_block(in_channel=512, depth=1024, num_units=36),
get_block(in_channel=1024, depth=2048, num_units=3)
]
elif num_layers == 200:
blocks = [
get_block(in_channel=64, depth=256, num_units=3),
get_block(in_channel=256, depth=512, num_units=24),
get_block(in_channel=512, depth=1024, num_units=36),
get_block(in_channel=1024, depth=2048, num_units=3)
]
return blocks
class Backbone(Module):
def __init__(self, input_size, num_layers, mode='ir'):
""" Args:
input_size: input_size of backbone
num_layers: num_layers of backbone
mode: support ir or irse
"""
super(Backbone, self).__init__()
assert input_size[0] in [112, 224], \
"input_size should be [112, 112] or [224, 224]"
assert num_layers in [18, 34, 50, 100, 152, 200], \
"num_layers should be 18, 34, 50, 100 or 152"
assert mode in ['ir', 'ir_se'], \
"mode should be ir or ir_se"
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
BatchNorm2d(64), PReLU(64))
blocks = get_blocks(num_layers)
if num_layers <= 100:
if mode == 'ir':
unit_module = BasicBlockIR
elif mode == 'ir_se':
unit_module = BasicBlockIRSE
output_channel = 512
else:
if mode == 'ir':
unit_module = BottleneckIR
elif mode == 'ir_se':
unit_module = BottleneckIRSE
output_channel = 2048
if input_size[0] == 112:
self.output_layer = Sequential(BatchNorm2d(output_channel),
Dropout(0.4), Flatten(),
Linear(output_channel * 7 * 7, 512),
BatchNorm1d(512, affine=False))
else:
self.output_layer = Sequential(
BatchNorm2d(output_channel), Dropout(0.4), Flatten(),
Linear(output_channel * 14 * 14, 512),
BatchNorm1d(512, affine=False))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
unit_module(bottleneck.in_channel, bottleneck.depth,
bottleneck.stride))
self.body = Sequential(*modules)
initialize_weights(self.modules())
def forward(self, x):
# current code only supports one extra image
# it comes with a extra dimension for number of extra image. We will just squeeze it out for now
x = self.input_layer(x)
for idx, module in enumerate(self.body):
x = module(x)
x = self.output_layer(x)
norm = torch.norm(x, 2, 1, True)
output = torch.div(x, norm)
return output, norm
def IR_18(input_size):
""" Constructs a ir-18 model.
"""
model = Backbone(input_size, 18, 'ir')
return model
def IR_34(input_size):
""" Constructs a ir-34 model.
"""
model = Backbone(input_size, 34, 'ir')
return model
def IR_50(input_size):
""" Constructs a ir-50 model.
"""
model = Backbone(input_size, 50, 'ir')
return model
def IR_101(input_size):
""" Constructs a ir-101 model.
"""
model = Backbone(input_size, 100, 'ir')
return model
def IR_152(input_size):
""" Constructs a ir-152 model.
"""
model = Backbone(input_size, 152, 'ir')
return model
def IR_200(input_size):
""" Constructs a ir-200 model.
"""
model = Backbone(input_size, 200, 'ir')
return model
def IR_SE_50(input_size):
""" Constructs a ir_se-50 model.
"""
model = Backbone(input_size, 50, 'ir_se')
return model
def IR_SE_101(input_size):
""" Constructs a ir_se-101 model.
"""
model = Backbone(input_size, 100, 'ir_se')
return model
def IR_SE_152(input_size):
""" Constructs a ir_se-152 model.
"""
model = Backbone(input_size, 152, 'ir_se')
return model
def IR_SE_200(input_size):
""" Constructs a ir_se-200 model.
"""
model = Backbone(input_size, 200, 'ir_se')
return model
|