File size: 8,486 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
'''

# author: Zhiyuan Yan

# email: [email protected]

# date: 2023-0706



The code is mainly modified from GitHub link below:

https://github.com/ondyari/FaceForensics/blob/master/classification/network/xception.py

'''

import os
import argparse
import logging

import math
import torch
# import pretrainedmodels
import torch.nn as nn
import torch.nn.functional as F

import torch.utils.model_zoo as model_zoo
from torch.nn import init
from typing import Union
from metrics.registry import BACKBONE

logger = logging.getLogger(__name__)



class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
        super(SeparableConv2d, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size,
                               stride, padding, dilation, groups=in_channels, bias=bias)
        self.pointwise = nn.Conv2d(
            in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)

    def forward(self, x):
        x = self.conv1(x)
        x = self.pointwise(x)
        return x


class Block(nn.Module):
    def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
        super(Block, self).__init__()

        if out_filters != in_filters or strides != 1:
            self.skip = nn.Conv2d(in_filters, out_filters,
                                  1, stride=strides, bias=False)
            self.skipbn = nn.BatchNorm2d(out_filters)
        else:
            self.skip = None

        self.relu = nn.ReLU(inplace=True)
        rep = []

        filters = in_filters
        if grow_first:   # whether the number of filters grows first
            rep.append(self.relu)
            rep.append(SeparableConv2d(in_filters, out_filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))
            filters = out_filters

        for i in range(reps-1):
            rep.append(self.relu)
            rep.append(SeparableConv2d(filters, filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(filters))

        if not grow_first:
            rep.append(self.relu)
            rep.append(SeparableConv2d(in_filters, out_filters,
                                       3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))

        if not start_with_relu:
            rep = rep[1:]
        else:
            rep[0] = nn.ReLU(inplace=False)

        if strides != 1:
            rep.append(nn.MaxPool2d(3, strides, 1))
        self.rep = nn.Sequential(*rep)

    def forward(self, inp):
        x = self.rep(inp)

        if self.skip is not None:
            skip = self.skip(inp)
            skip = self.skipbn(skip)
        else:
            skip = inp

        x += skip
        return x

def add_gaussian_noise(ins, mean=0, stddev=0.2):
    noise = ins.data.new(ins.size()).normal_(mean, stddev)
    return ins + noise


@BACKBONE.register_module(module_name="xception")
class Xception(nn.Module):
    """

    Xception optimized for the ImageNet dataset, as specified in

    https://arxiv.org/pdf/1610.02357.pdf

    """

    def __init__(self, xception_config):
        """ Constructor

        Args:

            xception_config: configuration file with the dict format

        """
        super(Xception, self).__init__()
        self.num_classes = xception_config["num_classes"]
        self.mode = xception_config["mode"]
        inc = xception_config["inc"]
        dropout = xception_config["dropout"]

        # Entry flow
        self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
        
        self.bn1 = nn.BatchNorm2d(32)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
        self.bn2 = nn.BatchNorm2d(64)
        # do relu here

        self.block1 = Block(
            64, 128, 2, 2, start_with_relu=False, grow_first=True)
        self.block2 = Block(
            128, 256, 2, 2, start_with_relu=True, grow_first=True)
        self.block3 = Block(
            256, 728, 2, 2, start_with_relu=True, grow_first=True)

        # middle flow
        self.block4 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block5 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block6 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block7 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)

        self.block8 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block9 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block10 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block11 = Block(
            728, 728, 3, 1, start_with_relu=True, grow_first=True)

        # Exit flow
        self.block12 = Block(
            728, 1024, 2, 2, start_with_relu=True, grow_first=False)

        self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(1536)

        # do relu here
        self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(2048)
        # used for iid
        final_channel = 2048
        if self.mode == 'adjust_channel_iid':
            final_channel = 512
            self.mode = 'adjust_channel'
        self.last_linear = nn.Linear(final_channel, self.num_classes)
        if dropout:
            self.last_linear = nn.Sequential(
                nn.Dropout(p=dropout),
                nn.Linear(final_channel, self.num_classes)
            )

        self.adjust_channel = nn.Sequential(
            nn.Conv2d(2048, 512, 1, 1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=False),
        )
           
    def fea_part1_0(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)  

        return x

    def fea_part1_1(self, x):  
        
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x) 

        return x
    
    def fea_part1(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)     
        
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x) 

        return x
    
    def fea_part2(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)

        return x

    def fea_part3(self, x):
        if self.mode == "shallow_xception":
            return x
        else:
            x = self.block4(x)
            x = self.block5(x)
            x = self.block6(x)
            x = self.block7(x)
        return x

    def fea_part4(self, x):
        if self.mode == "shallow_xception":
            x = self.block12(x)
        else:
            x = self.block8(x)
            x = self.block9(x)
            x = self.block10(x)
            x = self.block11(x)
            x = self.block12(x)
        return x

    def fea_part5(self, x):
        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu(x)

        x = self.conv4(x)
        x = self.bn4(x)

        return x
     
    def features(self, input):
        x = self.fea_part1(input)    

        x = self.fea_part2(x)
        x = self.fea_part3(x)
        x = self.fea_part4(x)

        x = self.fea_part5(x)

        if self.mode == 'adjust_channel':
            x = self.adjust_channel(x)
        
        return x

    def classifier(self, features,id_feat=None):
        # for iid
        if self.mode == 'adjust_channel':
            x = features
        else:
            x = self.relu(features)

        if len(x.shape) == 4:
            x = F.adaptive_avg_pool2d(x, (1, 1))
            x = x.view(x.size(0), -1)
        self.last_emb = x
        # for iid
        if id_feat!=None:
            out = self.last_linear(x-id_feat)
        else:
            out = self.last_linear(x)
        return out

    def forward(self, input):
        x = self.features(input)
        out = self.classifier(x)
        return out, x