anyantudre's picture
moved from training repo to inference
caa56d6
raw
history blame
6.23 kB
import numpy as np
from sklearn import metrics
from collections import defaultdict
import torch
import torch.nn as nn
def get_accracy(output, label):
_, prediction = torch.max(output, 1) # argmax
correct = (prediction == label).sum().item()
accuracy = correct / prediction.size(0)
return accuracy
def get_prediction(output, label):
prob = nn.functional.softmax(output, dim=1)[:, 1]
prob = prob.view(prob.size(0), 1)
label = label.view(label.size(0), 1)
#print(prob.size(), label.size())
datas = torch.cat((prob, label.float()), dim=1)
return datas
def calculate_metrics_for_train(label, output):
if output.size(1) == 2:
prob = torch.softmax(output, dim=1)[:, 1]
else:
prob = output
# Accuracy
_, prediction = torch.max(output, 1)
correct = (prediction == label).sum().item()
accuracy = correct / prediction.size(0)
# Average Precision
y_true = label.cpu().detach().numpy()
y_pred = prob.cpu().detach().numpy()
ap = metrics.average_precision_score(y_true, y_pred)
# AUC and EER
try:
fpr, tpr, thresholds = metrics.roc_curve(label.squeeze().cpu().numpy(),
prob.squeeze().cpu().numpy(),
pos_label=1)
except:
# for the case when we only have one sample
return None, None, accuracy, ap
if np.isnan(fpr[0]) or np.isnan(tpr[0]):
# for the case when all the samples within a batch is fake/real
auc, eer = None, None
else:
auc = metrics.auc(fpr, tpr)
fnr = 1 - tpr
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
return auc, eer, accuracy, ap
# ------------ compute average metrics of batches---------------------
class Metrics_batch():
def __init__(self):
self.tprs = []
self.mean_fpr = np.linspace(0, 1, 100)
self.aucs = []
self.eers = []
self.aps = []
self.correct = 0
self.total = 0
self.losses = []
def update(self, label, output):
acc = self._update_acc(label, output)
if output.size(1) == 2:
prob = torch.softmax(output, dim=1)[:, 1]
else:
prob = output
#label = 1-label
#prob = torch.softmax(output, dim=1)[:, 1]
auc, eer = self._update_auc(label, prob)
ap = self._update_ap(label, prob)
return acc, auc, eer, ap
def _update_auc(self, lab, prob):
fpr, tpr, thresholds = metrics.roc_curve(lab.squeeze().cpu().numpy(),
prob.squeeze().cpu().numpy(),
pos_label=1)
if np.isnan(fpr[0]) or np.isnan(tpr[0]):
return -1, -1
auc = metrics.auc(fpr, tpr)
interp_tpr = np.interp(self.mean_fpr, fpr, tpr)
interp_tpr[0] = 0.0
self.tprs.append(interp_tpr)
self.aucs.append(auc)
# return auc
# EER
fnr = 1 - tpr
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
self.eers.append(eer)
return auc, eer
def _update_acc(self, lab, output):
_, prediction = torch.max(output, 1) # argmax
correct = (prediction == lab).sum().item()
accuracy = correct / prediction.size(0)
# self.accs.append(accuracy)
self.correct = self.correct+correct
self.total = self.total+lab.size(0)
return accuracy
def _update_ap(self, label, prob):
y_true = label.cpu().detach().numpy()
y_pred = prob.cpu().detach().numpy()
ap = metrics.average_precision_score(y_true,y_pred)
self.aps.append(ap)
return np.mean(ap)
def get_mean_metrics(self):
mean_acc, std_acc = self.correct/self.total, 0
mean_auc, std_auc = self._mean_auc()
mean_err, std_err = np.mean(self.eers), np.std(self.eers)
mean_ap, std_ap = np.mean(self.aps), np.std(self.aps)
return {'acc':mean_acc, 'auc':mean_auc, 'eer':mean_err, 'ap':mean_ap}
def _mean_auc(self):
mean_tpr = np.mean(self.tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = metrics.auc(self.mean_fpr, mean_tpr)
std_auc = np.std(self.aucs)
return mean_auc, std_auc
def clear(self):
self.tprs.clear()
self.aucs.clear()
# self.accs.clear()
self.correct=0
self.total=0
self.eers.clear()
self.aps.clear()
self.losses.clear()
# ------------ compute average metrics of all data ---------------------
class Metrics_all():
def __init__(self):
self.probs = []
self.labels = []
self.correct = 0
self.total = 0
def store(self, label, output):
prob = torch.softmax(output, dim=1)[:, 1]
_, prediction = torch.max(output, 1) # argmax
correct = (prediction == label).sum().item()
self.correct += correct
self.total += label.size(0)
self.labels.append(label.squeeze().cpu().numpy())
self.probs.append(prob.squeeze().cpu().numpy())
def get_metrics(self):
y_pred = np.concatenate(self.probs)
y_true = np.concatenate(self.labels)
# auc
fpr, tpr, thresholds = metrics.roc_curve(y_true,y_pred,pos_label=1)
auc = metrics.auc(fpr, tpr)
# eer
fnr = 1 - tpr
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
# ap
ap = metrics.average_precision_score(y_true,y_pred)
# acc
acc = self.correct / self.total
return {'acc':acc, 'auc':auc, 'eer':eer, 'ap':ap}
def clear(self):
self.probs.clear()
self.labels.clear()
self.correct = 0
self.total = 0
# only used to record a series of scalar value
class Recorder:
def __init__(self):
self.sum = 0
self.num = 0
def update(self, item, num=1):
if item is not None:
self.sum += item * num
self.num += num
def average(self):
if self.num == 0:
return None
return self.sum/self.num
def clear(self):
self.sum = 0
self.num = 0