anyantudre's picture
moved from training repo to inference
caa56d6
raw
history blame
3.45 kB
from sklearn import metrics
import numpy as np
def parse_metric_for_print(metric_dict):
if metric_dict is None:
return "\n"
str = "\n"
str += "================================ Each dataset best metric ================================ \n"
for key, value in metric_dict.items():
if key != 'avg':
str= str+ f"| {key}: "
for k,v in value.items():
str = str + f" {k}={v} "
str= str+ "| \n"
else:
str += "============================================================================================= \n"
str += "================================== Average best metric ====================================== \n"
avg_dict = value
for avg_key, avg_value in avg_dict.items():
if avg_key == 'dataset_dict':
for key,value in avg_value.items():
str = str + f"| {key}: {value} | \n"
else:
str = str + f"| avg {avg_key}: {avg_value} | \n"
str += "============================================================================================="
return str
def get_test_metrics(y_pred, y_true, img_names):
def get_video_metrics(image, pred, label):
result_dict = {}
new_label = []
new_pred = []
# print(image[0])
# print(pred.shape)
# print(label.shape)
for item in np.transpose(np.stack((image, pred, label)), (1, 0)):
s = item[0]
if '\\' in s:
parts = s.split('\\')
else:
parts = s.split('/')
a = parts[-2]
b = parts[-1]
if a not in result_dict:
result_dict[a] = []
result_dict[a].append(item)
image_arr = list(result_dict.values())
for video in image_arr:
pred_sum = 0
label_sum = 0
leng = 0
for frame in video:
pred_sum += float(frame[1])
label_sum += int(frame[2])
leng += 1
new_pred.append(pred_sum / leng)
new_label.append(int(label_sum / leng))
fpr, tpr, thresholds = metrics.roc_curve(new_label, new_pred)
v_auc = metrics.auc(fpr, tpr)
fnr = 1 - tpr
v_eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
return v_auc, v_eer
y_pred = y_pred.squeeze()
# For UCF, where labels for different manipulations are not consistent.
y_true[y_true >= 1] = 1
# auc
fpr, tpr, thresholds = metrics.roc_curve(y_true, y_pred, pos_label=1)
auc = metrics.auc(fpr, tpr)
# eer
fnr = 1 - tpr
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
# ap
ap = metrics.average_precision_score(y_true, y_pred)
# acc
prediction_class = (y_pred > 0.5).astype(int)
correct = (prediction_class == np.clip(y_true, a_min=0, a_max=1)).sum().item()
acc = correct / len(prediction_class)
if type(img_names[0]) is not list:
# calculate video-level auc for the frame-level methods.
v_auc, _ = get_video_metrics(img_names, y_pred, y_true)
else:
# video-level methods
v_auc=auc
return {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap, 'pred': y_pred, 'video_auc': v_auc, 'label': y_true}