|
from sklearn import metrics
|
|
import numpy as np
|
|
|
|
|
|
def parse_metric_for_print(metric_dict):
|
|
if metric_dict is None:
|
|
return "\n"
|
|
str = "\n"
|
|
str += "================================ Each dataset best metric ================================ \n"
|
|
for key, value in metric_dict.items():
|
|
if key != 'avg':
|
|
str= str+ f"| {key}: "
|
|
for k,v in value.items():
|
|
str = str + f" {k}={v} "
|
|
str= str+ "| \n"
|
|
else:
|
|
str += "============================================================================================= \n"
|
|
str += "================================== Average best metric ====================================== \n"
|
|
avg_dict = value
|
|
for avg_key, avg_value in avg_dict.items():
|
|
if avg_key == 'dataset_dict':
|
|
for key,value in avg_value.items():
|
|
str = str + f"| {key}: {value} | \n"
|
|
else:
|
|
str = str + f"| avg {avg_key}: {avg_value} | \n"
|
|
str += "============================================================================================="
|
|
return str
|
|
|
|
|
|
def get_test_metrics(y_pred, y_true, img_names):
|
|
def get_video_metrics(image, pred, label):
|
|
result_dict = {}
|
|
new_label = []
|
|
new_pred = []
|
|
|
|
|
|
|
|
for item in np.transpose(np.stack((image, pred, label)), (1, 0)):
|
|
|
|
s = item[0]
|
|
if '\\' in s:
|
|
parts = s.split('\\')
|
|
else:
|
|
parts = s.split('/')
|
|
a = parts[-2]
|
|
b = parts[-1]
|
|
|
|
if a not in result_dict:
|
|
result_dict[a] = []
|
|
|
|
result_dict[a].append(item)
|
|
image_arr = list(result_dict.values())
|
|
|
|
for video in image_arr:
|
|
pred_sum = 0
|
|
label_sum = 0
|
|
leng = 0
|
|
for frame in video:
|
|
pred_sum += float(frame[1])
|
|
label_sum += int(frame[2])
|
|
leng += 1
|
|
new_pred.append(pred_sum / leng)
|
|
new_label.append(int(label_sum / leng))
|
|
fpr, tpr, thresholds = metrics.roc_curve(new_label, new_pred)
|
|
v_auc = metrics.auc(fpr, tpr)
|
|
fnr = 1 - tpr
|
|
v_eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
|
|
return v_auc, v_eer
|
|
|
|
|
|
y_pred = y_pred.squeeze()
|
|
|
|
y_true[y_true >= 1] = 1
|
|
|
|
fpr, tpr, thresholds = metrics.roc_curve(y_true, y_pred, pos_label=1)
|
|
auc = metrics.auc(fpr, tpr)
|
|
|
|
fnr = 1 - tpr
|
|
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
|
|
|
|
ap = metrics.average_precision_score(y_true, y_pred)
|
|
|
|
prediction_class = (y_pred > 0.5).astype(int)
|
|
correct = (prediction_class == np.clip(y_true, a_min=0, a_max=1)).sum().item()
|
|
acc = correct / len(prediction_class)
|
|
if type(img_names[0]) is not list:
|
|
|
|
v_auc, _ = get_video_metrics(img_names, y_pred, y_true)
|
|
else:
|
|
|
|
v_auc=auc
|
|
|
|
return {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap, 'pred': y_pred, 'video_auc': v_auc, 'label': y_true}
|
|
|