anyantudre's picture
moved from training repo to inference
caa56d6
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-03-30
The code is designed for scenarios such as disentanglement-based methods where it is necessary to ensure an equal number of positive and negative samples.
'''
import torch
import random
import numpy as np
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
class pairDataset(DeepfakeAbstractBaseDataset):
def __init__(self, config=None, mode='train'):
super().__init__(config, mode)
# Get real and fake image lists
# Fix the label of real images to be 0 and fake images to be 1
self.fake_imglist = [(img, label, 1) for img, label in zip(self.image_list, self.label_list) if label != 0]
self.real_imglist = [(img, label, 0) for img, label in zip(self.image_list, self.label_list) if label == 0]
def __getitem__(self, index, norm=True):
# Get the fake and real image paths and labels
fake_image_path, fake_spe_label, fake_label = self.fake_imglist[index]
real_index = random.randint(0, len(self.real_imglist) - 1) # Randomly select a real image
real_image_path, real_spe_label, real_label = self.real_imglist[real_index]
# Get the mask and landmark paths for fake and real images
fake_mask_path = fake_image_path.replace('frames', 'masks')
fake_landmark_path = fake_image_path.replace('frames', 'landmarks').replace('.png', '.npy')
real_mask_path = real_image_path.replace('frames', 'masks')
real_landmark_path = real_image_path.replace('frames', 'landmarks').replace('.png', '.npy')
# Load the fake and real images
fake_image = self.load_rgb(fake_image_path)
real_image = self.load_rgb(real_image_path)
fake_image = np.array(fake_image) # Convert to numpy array for data augmentation
real_image = np.array(real_image) # Convert to numpy array for data augmentation
# Load mask and landmark (if needed) for fake and real images
if self.config['with_mask']:
fake_mask = self.load_mask(fake_mask_path)
real_mask = self.load_mask(real_mask_path)
else:
fake_mask, real_mask = None, None
if self.config['with_landmark']:
fake_landmarks = self.load_landmark(fake_landmark_path)
real_landmarks = self.load_landmark(real_landmark_path)
else:
fake_landmarks, real_landmarks = None, None
# Do transforms for fake and real images
fake_image_trans, fake_landmarks_trans, fake_mask_trans = self.data_aug(fake_image, fake_landmarks, fake_mask)
real_image_trans, real_landmarks_trans, real_mask_trans = self.data_aug(real_image, real_landmarks, real_mask)
if not norm:
return {"fake": (fake_image_trans, fake_label),
"real": (real_image_trans, real_label)}
# To tensor and normalize for fake and real images
fake_image_trans = self.normalize(self.to_tensor(fake_image_trans))
real_image_trans = self.normalize(self.to_tensor(real_image_trans))
# Convert landmarks and masks to tensors if they exist
if self.config['with_landmark']:
fake_landmarks_trans = torch.from_numpy(fake_landmarks_trans)
real_landmarks_trans = torch.from_numpy(real_landmarks_trans)
if self.config['with_mask']:
fake_mask_trans = torch.from_numpy(fake_mask_trans)
real_mask_trans = torch.from_numpy(real_mask_trans)
return {"fake": (fake_image_trans, fake_label, fake_spe_label, fake_landmarks_trans, fake_mask_trans),
"real": (real_image_trans, real_label, real_spe_label, real_landmarks_trans, real_mask_trans)}
def __len__(self):
return len(self.fake_imglist)
@staticmethod
def collate_fn(batch):
"""
Collate a batch of data points.
Args:
batch (list): A list of tuples containing the image tensor, the label tensor,
the landmark tensor, and the mask tensor.
Returns:
A tuple containing the image tensor, the label tensor, the landmark tensor,
and the mask tensor.
"""
# Separate the image, label, landmark, and mask tensors for fake and real data
fake_images, fake_labels, fake_spe_labels, fake_landmarks, fake_masks = zip(*[data["fake"] for data in batch])
real_images, real_labels, real_spe_labels, real_landmarks, real_masks = zip(*[data["real"] for data in batch])
# Stack the image, label, landmark, and mask tensors for fake and real data
fake_images = torch.stack(fake_images, dim=0)
fake_labels = torch.LongTensor(fake_labels)
fake_spe_labels = torch.LongTensor(fake_spe_labels)
real_images = torch.stack(real_images, dim=0)
real_labels = torch.LongTensor(real_labels)
real_spe_labels = torch.LongTensor(real_spe_labels)
# Special case for landmarks and masks if they are None
if fake_landmarks[0] is not None:
fake_landmarks = torch.stack(fake_landmarks, dim=0)
else:
fake_landmarks = None
if real_landmarks[0] is not None:
real_landmarks = torch.stack(real_landmarks, dim=0)
else:
real_landmarks = None
if fake_masks[0] is not None:
fake_masks = torch.stack(fake_masks, dim=0)
else:
fake_masks = None
if real_masks[0] is not None:
real_masks = torch.stack(real_masks, dim=0)
else:
real_masks = None
# Combine the fake and real tensors and create a dictionary of the tensors
images = torch.cat([real_images, fake_images], dim=0)
labels = torch.cat([real_labels, fake_labels], dim=0)
spe_labels = torch.cat([real_spe_labels, fake_spe_labels], dim=0)
if fake_landmarks is not None and real_landmarks is not None:
landmarks = torch.cat([real_landmarks, fake_landmarks], dim=0)
else:
landmarks = None
if fake_masks is not None and real_masks is not None:
masks = torch.cat([real_masks, fake_masks], dim=0)
else:
masks = None
data_dict = {
'image': images,
'label': labels,
'label_spe': spe_labels,
'landmark': landmarks,
'mask': masks
}
return data_dict