|
import cv2
|
|
import numpy as np
|
|
import math
|
|
import numbers
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class GaussianSmoothing(nn.Module):
|
|
"""
|
|
Apply gaussian smoothing on a
|
|
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
|
|
in the input using a depthwise convolution.
|
|
Arguments:
|
|
channels (int, sequence): Number of channels of the input tensors. Output will
|
|
have this number of channels as well.
|
|
kernel_size (int, sequence): Size of the gaussian kernel.
|
|
sigma (float, sequence): Standard deviation of the gaussian kernel.
|
|
dim (int, optional): The number of dimensions of the data.
|
|
Default value is 2 (spatial).
|
|
"""
|
|
|
|
def __init__(self, channels, kernel_size, sigma=0.1, dim=2):
|
|
super(GaussianSmoothing, self).__init__()
|
|
self.kernel_size = kernel_size
|
|
if isinstance(kernel_size, numbers.Number):
|
|
kernel_size = [kernel_size] * dim
|
|
if isinstance(sigma, numbers.Number):
|
|
sigma = [sigma] * dim
|
|
|
|
|
|
|
|
kernel = 1
|
|
meshgrids = torch.meshgrid(
|
|
[
|
|
torch.arange(size, dtype=torch.float32)
|
|
for size in kernel_size
|
|
]
|
|
)
|
|
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
|
mean = (size - 1) / 2
|
|
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * \
|
|
torch.exp(-((mgrid - mean) / std) ** 2 / 2)
|
|
|
|
|
|
kernel = kernel / torch.sum(kernel)
|
|
|
|
|
|
kernel = kernel.view(1, 1, *kernel.size())
|
|
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
|
|
|
|
self.register_buffer('weight', kernel)
|
|
self.groups = channels
|
|
|
|
if dim == 1:
|
|
self.conv = F.conv1d
|
|
elif dim == 2:
|
|
self.conv = F.conv2d
|
|
elif dim == 3:
|
|
self.conv = F.conv3d
|
|
else:
|
|
raise RuntimeError(
|
|
'Only 1, 2 and 3 dimensions are supported. Received {}.'.format(
|
|
dim)
|
|
)
|
|
|
|
def forward(self, input):
|
|
"""
|
|
Apply gaussian filter to input.
|
|
Arguments:
|
|
input (torch.Tensor): Input to apply gaussian filter on.
|
|
Returns:
|
|
filtered (torch.Tensor): Filtered output.
|
|
"""
|
|
if self.training:
|
|
return self.conv(input, weight=self.weight, groups=self.groups, padding=self.kernel_size//2)
|
|
else:
|
|
return input
|
|
|
|
class GaussianNoise(nn.Module):
|
|
def __init__(self, mean=0, std=0.1, clip=1):
|
|
super(GaussianNoise, self).__init__()
|
|
self.mean = mean
|
|
self.std = std
|
|
self.clip = clip
|
|
|
|
def forward(self, x):
|
|
if self.training:
|
|
noise = x.data.new(x.size()).normal_(self.mean, self.std)
|
|
return torch.clamp(x + noise, -self.clip, self.clip)
|
|
else:
|
|
return x
|
|
|
|
|
|
if __name__ == "__main__":
|
|
im = cv2.imread('E:\SRM\component\FF-F2F_0.png')
|
|
im_ten = im/255*2-1
|
|
im_ten = torch.from_numpy(im_ten).unsqueeze(0).permute(0, 3, 1, 2).float()
|
|
blur = GaussianSmoothing(channels=3, kernel_size=7, sigma=0.8)
|
|
noise = GaussianNoise()
|
|
|
|
noise_im = torch.clamp(noise(im_ten), -1, 1)
|
|
blur_im = blur(im_ten)
|
|
print(blur_im.size())
|
|
|
|
def t2im(t):
|
|
|
|
t = (t+1)/2*255
|
|
im = t.squeeze().cpu().numpy().transpose(1, 2, 0).astype(np.uint8)
|
|
return im
|
|
|
|
cv2.imshow('ori', im)
|
|
cv2.imshow('blur', t2im(blur_im))
|
|
cv2.imshow('noise', t2im(noise_im))
|
|
|
|
cv2.waitKey()
|
|
|