anyantudre's picture
moved from training repo to inference
caa56d6
# -*- coding: utf-8 -*-
"""
Created on 18-5-21 下午5:26
@author: ronghuaiyang
"""
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch.nn.utils.weight_norm as weight_norm
import torch.nn.functional as F
# __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
# 'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class AdaIN(nn.Module):
def __init__(self, eps=1e-5):
super().__init__()
self.eps = eps
# self.l1 = nn.Linear(num_classes, in_channel*4, bias=True) #bias is good :)
def c_norm(self, x, bs, ch, eps=1e-7):
# assert isinstance(x, torch.cuda.FloatTensor)
x_var = x.var(dim=-1) + eps
x_std = x_var.sqrt().view(bs, ch, 1, 1)
x_mean = x.mean(dim=-1).view(bs, ch, 1, 1)
return x_std, x_mean
def forward(self, x, y):
assert x.size(0)==y.size(0)
size = x.size()
bs, ch = size[:2]
x_ = x.view(bs, ch, -1)
y_ = y.reshape(bs, ch, -1)
x_std, x_mean = self.c_norm(x_, bs, ch, eps=self.eps)
y_std, y_mean = self.c_norm(y_, bs, ch, eps=self.eps)
out = ((x - x_mean.expand(size)) / x_std.expand(size)) \
* y_std.expand(size) + y_mean.expand(size)
return out
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class BasicBlock_adain(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock_adain, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.adain1 = AdaIN()
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.adain2 = AdaIN()
self.downsample = downsample
self.stride = stride
def forward(self, feat): # x is content, c is style
x, c = feat
residual = x
x = self.conv1(x)
out = self.adain1(x, c)
out = self.relu(out)
out = self.conv2(out)
out = self.adain2(out, c)
if self.downsample is not None:
residual = self.downsample(residual)
out += residual
out = self.relu(out)
return (out, c)
class IRBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
super(IRBlock, self).__init__()
self.bn0 = nn.BatchNorm2d(inplanes)
self.conv1 = conv3x3(inplanes, inplanes)
self.bn1 = nn.BatchNorm2d(inplanes)
self.prelu = nn.PReLU()
self.conv2 = conv3x3(inplanes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.use_se = use_se
if self.use_se:
self.se = SEBlock(planes)
def forward(self, x):
residual = x
out = self.bn0(x)
out = self.conv1(out)
out = self.bn1(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.use_se:
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.prelu(out)
return out
class IRBlock_3conv(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True):
super(IRBlock_3conv, self).__init__()
self.bn0 = nn.BatchNorm2d(inplanes)
self.conv1 = conv3x3(inplanes, inplanes)
self.bn1 = nn.BatchNorm2d(inplanes)
self.prelu1 = nn.PReLU()
self.conv2 = conv3x3(inplanes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.prelu2 = nn.PReLU()
self.conv3 = conv3x3(planes, planes)
self.bn3 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
self.use_se = use_se
if self.use_se:
self.se = SEBlock(planes)
self.prelu = nn.PReLU()
def forward(self, x):
residual = x
out = self.bn0(x)
out = self.conv1(out)
out = self.bn1(out)
out = self.prelu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.prelu2(out)
out = self.conv3(out)
out = self.bn3(out)
if self.use_se:
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.prelu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(
planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class SEBlock(nn.Module):
def __init__(self, channel, reduction=16):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.PReLU(),
nn.Linear(channel // reduction, channel),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class ResNetFace(nn.Module):
def __init__(self, block, layers, use_se=True, inc=3):
self.inplanes = 64
self.use_se = use_se
super(ResNetFace, self).__init__()
self.conv1 = nn.Conv2d(inc, 64, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.prelu = nn.PReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.bn4 = nn.BatchNorm2d(512)
#self.dropout = nn.Dropout()
self.fc5 = nn.Linear(512 * 8 * 8, 512)
#self.bn5 = nn.BatchNorm1d(512)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride,
downsample, use_se=self.use_se))
self.inplanes = planes
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, use_se=self.use_se))
return nn.Sequential(*layers)
def features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn4(x)
return x
def classifier(self, x):
x = x.view(x.size(0), -1)
x = self.fc5(x)
return x
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn4(x)
#x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.fc5(x)
#x = self.bn5(x)
return x
class ResNet(nn.Module):
def __init__(self, block, layers, basedim=32, inc=1):
self.inplanes = basedim
super(ResNet, self).__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
# bias=False)
self.conv1 = nn.Conv2d(inc, self.inplanes, kernel_size=3, stride=1, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu = nn.ReLU(inplace=True)
# self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, basedim, layers[0], stride=2)
self.layer2 = self._make_layer(block, 2*basedim, layers[1], stride=2)
self.layer3 = self._make_layer(block, 4*basedim, layers[2], stride=2)
self.layer4 = self._make_layer(block, 8*basedim, layers[3], stride=2)
# self.avgpool = nn.AvgPool2d(8, stride=1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
self.fc5 = nn.Linear(512 * 8 * 8, 512)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def features(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def classifier(self, x):
x = x.view(x.size(0), -1)
x = self.fc5(x)
return x
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
# x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# x = nn.AvgPool2d(kernel_size=x.size()[2:])(x)
# x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc5(x)
return x
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
def resnet_face18(use_se=True, **kwargs):
model = ResNetFace(IRBlock, [2, 2, 2, 2], use_se=use_se, **kwargs)
return model
def resnet_face62(use_se=True, **kwargs):
model = ResNetFace(IRBlock_3conv, [3, 4, 10, 3], use_se=use_se, **kwargs)
return model
if __name__ == "__main__":
net = HR_resnet()
dummy = torch.rand(10,3,256,256)
x = net(dummy)
print('output:', x.size())