|
"""
|
|
|
|
Author: Andreas Rössler
|
|
"""
|
|
import torchvision
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.model_zoo as model_zoo
|
|
|
|
from metrics.registry import BACKBONE
|
|
|
|
pretrained_settings = {
|
|
'xception': {
|
|
'imagenet': {
|
|
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth',
|
|
'input_space': 'RGB',
|
|
'input_size': [3, 299, 299],
|
|
'input_range': [0, 1],
|
|
'mean': [0.5, 0.5, 0.5],
|
|
'std': [0.5, 0.5, 0.5],
|
|
'num_classes': 1000,
|
|
'scale': 0.8975
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
class SeparableConv2d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
|
|
super(SeparableConv2d, self).__init__()
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size,
|
|
stride, padding, dilation, groups=in_channels, bias=bias)
|
|
self.pointwise = nn.Conv2d(
|
|
in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.pointwise(x)
|
|
return x
|
|
|
|
|
|
class RegressionMap(nn.Module):
|
|
def __init__(self, c_in):
|
|
super(RegressionMap, self).__init__()
|
|
self.c = SeparableConv2d(c_in, 1, 3, stride=1, padding=1, bias=False)
|
|
self.s = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
mask = self.c(x)
|
|
mask = self.s(mask)
|
|
return mask
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
|
|
super(Block, self).__init__()
|
|
|
|
if out_filters != in_filters or strides != 1:
|
|
self.skip = nn.Conv2d(in_filters, out_filters,
|
|
1, stride=strides, bias=False)
|
|
self.skipbn = nn.BatchNorm2d(out_filters)
|
|
else:
|
|
self.skip = None
|
|
|
|
self.relu = nn.ReLU(inplace=False)
|
|
rep = []
|
|
|
|
filters = in_filters
|
|
if grow_first:
|
|
rep.append(self.relu)
|
|
rep.append(SeparableConv2d(in_filters, out_filters,
|
|
3, stride=1, padding=1, bias=False))
|
|
rep.append(nn.BatchNorm2d(out_filters))
|
|
filters = out_filters
|
|
|
|
for i in range(reps - 1):
|
|
rep.append(self.relu)
|
|
rep.append(SeparableConv2d(filters, filters,
|
|
3, stride=1, padding=1, bias=False))
|
|
rep.append(nn.BatchNorm2d(filters))
|
|
|
|
if not grow_first:
|
|
rep.append(self.relu)
|
|
rep.append(SeparableConv2d(in_filters, out_filters,
|
|
3, stride=1, padding=1, bias=False))
|
|
rep.append(nn.BatchNorm2d(out_filters))
|
|
|
|
if not start_with_relu:
|
|
rep = rep[1:]
|
|
else:
|
|
rep[0] = nn.ReLU(inplace=False)
|
|
|
|
if strides != 1:
|
|
rep.append(nn.MaxPool2d(3, strides, 1))
|
|
self.rep = nn.Sequential(*rep)
|
|
|
|
def forward(self, inp):
|
|
x = self.rep(inp)
|
|
|
|
if self.skip is not None:
|
|
skip = self.skip(inp)
|
|
skip = self.skipbn(skip)
|
|
else:
|
|
skip = inp
|
|
|
|
x += skip
|
|
return x
|
|
|
|
@BACKBONE.register_module(module_name="xception_sladd")
|
|
class Xception_SLADD(nn.Module):
|
|
"""
|
|
Xception optimized for the ImageNet dataset, as specified in
|
|
https://arxiv.org/pdf/1610.02357.pdf
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
""" Constructor
|
|
Args:
|
|
num_classes: number of classes
|
|
"""
|
|
super(Xception_SLADD, self).__init__()
|
|
num_classes = config["num_classes"]
|
|
inc = config["inc"]
|
|
dropout = config["dropout"]
|
|
|
|
|
|
self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(32)
|
|
self.relu = nn.ReLU(inplace=False)
|
|
|
|
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(64)
|
|
|
|
|
|
self.block1 = Block(
|
|
64, 128, 2, 2, start_with_relu=False, grow_first=True)
|
|
self.block2 = Block(
|
|
128, 256, 2, 2, start_with_relu=True, grow_first=True)
|
|
self.block3 = Block(
|
|
256, 728, 2, 2, start_with_relu=True, grow_first=True)
|
|
|
|
|
|
self.block4 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block5 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block6 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block7 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
|
|
self.block8 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block9 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block10 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
self.block11 = Block(
|
|
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
|
|
|
|
|
self.block12 = Block(
|
|
728, 1024, 2, 2, start_with_relu=True, grow_first=False)
|
|
|
|
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
|
|
self.bn3 = nn.BatchNorm2d(1536)
|
|
|
|
|
|
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
|
|
self.bn4 = nn.BatchNorm2d(2048)
|
|
final_channel = 2048
|
|
self.last_linear = nn.Linear(final_channel, num_classes)
|
|
if dropout:
|
|
self.last_linear = nn.Sequential(
|
|
nn.Dropout(p=dropout),
|
|
nn.Linear(final_channel, num_classes)
|
|
)
|
|
self.type_fc = nn.Linear(2048, 5)
|
|
self.mag_fc = nn.Linear(2048, 1)
|
|
self.map = RegressionMap(728)
|
|
self.pecent = 1.0 / 1.5
|
|
|
|
def fea_part1_0(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
def fea_part1_1(self, x):
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
def fea_part1(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.conv2(x)
|
|
x = self.bn2(x)
|
|
x = self.relu(x)
|
|
|
|
return x
|
|
|
|
def fea_part2(self, x):
|
|
x = self.block1(x)
|
|
x = self.block2(x)
|
|
x = self.block3(x)
|
|
|
|
return x
|
|
|
|
def fea_part3(self, x):
|
|
x = self.block4(x)
|
|
x = self.block5(x)
|
|
x = self.block6(x)
|
|
x = self.block7(x)
|
|
|
|
return x
|
|
|
|
def fea_part4(self, x):
|
|
x = self.block8(x)
|
|
x = self.block9(x)
|
|
x = self.block10(x)
|
|
x = self.block11(x)
|
|
x = self.block12(x)
|
|
|
|
return x
|
|
|
|
def fea_part5(self, x):
|
|
x = self.conv3(x)
|
|
x = self.bn3(x)
|
|
x = self.relu(x)
|
|
|
|
x = self.conv4(x)
|
|
x = self.bn4(x)
|
|
|
|
return x
|
|
|
|
def features(self, input):
|
|
x = self.fea_part1(input)
|
|
|
|
x = self.fea_part2(x)
|
|
x3 = self.fea_part3(x)
|
|
x = self.fea_part4(x3)
|
|
|
|
x = self.fea_part5(x)
|
|
return x,x3
|
|
|
|
|
|
def classifier(self, x):
|
|
x = self.relu(x)
|
|
x = F.adaptive_avg_pool2d(x, (1, 1))
|
|
x = x.view(x.size(0), -1)
|
|
out = self.last_linear(x)
|
|
return out, x
|
|
|
|
def estimateMap(self, x):
|
|
map = self.map(x)
|
|
return map
|
|
|
|
|
|
def forward(self, x):
|
|
x,x3=self.features(x)
|
|
out, fea, type, mag = self.classifier(x)
|
|
map = self.estimateMap(x3)
|
|
return out, fea, map, type, mag
|
|
|