import numpy from .umeyama import umeyama from numpy.linalg import inv import cv2 mean_face_x = numpy.array([ 0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124, 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036, 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918, 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149, 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721, 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874, 0.553364, 0.490127, 0.42689 ]) mean_face_y = numpy.array([ 0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891, 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326, 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733, 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099, 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805, 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746, 0.784792, 0.824182, 0.831803, 0.824182 ]) landmarks_2D = numpy.stack( [ mean_face_x, mean_face_y ], axis=1 ) def get_align_mat(face, size, should_align_eyes): mat_umeyama = umeyama(numpy.array(face.landmarks_as_xy()[17:]), landmarks_2D, True)[0:2] if should_align_eyes is False: return mat_umeyama mat_umeyama = mat_umeyama * size # Convert to matrix landmarks = numpy.matrix(face.landmarks_as_xy()) # cv2 expects points to be in the form np.array([ [[x1, y1]], [[x2, y2]], ... ]), we'll expand the dim landmarks = numpy.expand_dims(landmarks, axis=1) # Align the landmarks using umeyama umeyama_landmarks = cv2.transform(landmarks, mat_umeyama, landmarks.shape) # Determine a rotation matrix to align eyes horizontally mat_align_eyes = align_eyes(umeyama_landmarks, size) # Extend the 2x3 transform matrices to 3x3 so we can multiply them # and combine them as one mat_umeyama = numpy.matrix(mat_umeyama) mat_umeyama.resize((3, 3)) mat_align_eyes = numpy.matrix(mat_align_eyes) mat_align_eyes.resize((3, 3)) mat_umeyama[2] = mat_align_eyes[2] = [0, 0, 1] # Combine the umeyama transform with the extra rotation matrix transform_mat = mat_align_eyes * mat_umeyama # Remove the extra row added, shape needs to be 2x3 transform_mat = numpy.delete(transform_mat, 2, 0) transform_mat = transform_mat / size return transform_mat from .face_blend import get_5_keypoint def get_align_mat_new(src_lmk, tgt_lmk, size=256, should_align_eyes=False): mat_umeyama = umeyama(get_5_keypoint(src_lmk), get_5_keypoint(tgt_lmk), True)[0:2] # mat_umeyama = umeyama(numpy.array(src_lmk[17:]), numpy.array(tgt_lmk[17:]), True)[0:2] if should_align_eyes is False: return mat_umeyama mat_umeyama = mat_umeyama * size # Convert to matrix landmarks = numpy.matrix(face.landmarks_as_xy()) # cv2 expects points to be in the form np.array([ [[x1, y1]], [[x2, y2]], ... ]), we'll expand the dim landmarks = numpy.expand_dims(landmarks, axis=1) # Align the landmarks using umeyama umeyama_landmarks = cv2.transform(landmarks, mat_umeyama, landmarks.shape) # Determine a rotation matrix to align eyes horizontally mat_align_eyes = align_eyes(umeyama_landmarks, size) # Extend the 2x3 transform matrices to 3x3 so we can multiply them # and combine them as one mat_umeyama = numpy.matrix(mat_umeyama) mat_umeyama.resize((3, 3)) mat_align_eyes = numpy.matrix(mat_align_eyes) mat_align_eyes.resize((3, 3)) mat_umeyama[2] = mat_align_eyes[2] = [0, 0, 1] # Combine the umeyama transform with the extra rotation matrix transform_mat = mat_align_eyes * mat_umeyama # Remove the extra row added, shape needs to be 2x3 transform_mat = numpy.delete(transform_mat, 2, 0) transform_mat = transform_mat / size return transform_mat # Code borrowed from https://github.com/jrosebr1/imutils/blob/d5cb29d02cf178c399210d5a139a821dfb0ae136/imutils/face_utils/helpers.py """ The MIT License (MIT) Copyright (c) 2015-2016 Adrian Rosebrock, http://www.pyimagesearch.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from collections import OrderedDict import numpy as np import cv2 # define a dictionary that maps the indexes of the facial # landmarks to specific face regions FACIAL_LANDMARKS_IDXS = OrderedDict([ ("mouth", (48, 68)), ("right_eyebrow", (17, 22)), ("left_eyebrow", (22, 27)), ("right_eye", (36, 42)), ("left_eye", (42, 48)), ("nose", (27, 36)), ("jaw", (0, 17)), ("chin", (8, 11)) ]) # Returns a rotation matrix that when applied to the 68 input facial landmarks # results in landmarks with eyes aligned horizontally def align_eyes(landmarks, size): desiredLeftEye = (0.35, 0.35) # (y, x) value desiredFaceWidth = desiredFaceHeight = size # extract the left and right eye (x, y)-coordinates (lStart, lEnd) = FACIAL_LANDMARKS_IDXS["left_eye"] (rStart, rEnd) = FACIAL_LANDMARKS_IDXS["right_eye"] leftEyePts = landmarks[lStart:lEnd] rightEyePts = landmarks[rStart:rEnd] # compute the center of mass for each eye leftEyeCenter = leftEyePts.mean(axis=0).astype("int") rightEyeCenter = rightEyePts.mean(axis=0).astype("int") # compute the angle between the eye centroids dY = rightEyeCenter[0,1] - leftEyeCenter[0,1] dX = rightEyeCenter[0,0] - leftEyeCenter[0,0] angle = np.degrees(np.arctan2(dY, dX)) - 180 # compute center (x, y)-coordinates (i.e., the median point) # between the two eyes in the input image eyesCenter = ((leftEyeCenter[0,0] + rightEyeCenter[0,0]) // 2, (leftEyeCenter[0,1] + rightEyeCenter[0,1]) // 2) # grab the rotation matrix for rotating and scaling the face M = cv2.getRotationMatrix2D(eyesCenter, angle, 1.0) return M