""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter import torch as th from .abstract_loss_func import AbstractLossClass from metrics.registry import LOSSFUNC #------------ AMSoftmax Loss ---------------------- def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() @LOSSFUNC.register_module(module_name="am_softmax") class AMSoftmaxLoss(AbstractLossClass): """Computes the AM-Softmax loss with cos or arc margin""" margin_types = ['cos', 'arc'] def __init__(self, margin_type='cos', gamma=0., m=0.5, s=30, t=1.): super().__init__() assert margin_type in AMSoftmaxLoss.margin_types self.margin_type = margin_type assert gamma >= 0 self.gamma = gamma assert m > 0 self.m = m assert s > 0 self.s = s self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) assert t >= 1 self.t = t def forward(self, cos_theta, target): if self.margin_type == 'cos': phi_theta = cos_theta - self.m else: sine = torch.sqrt(1.0 - torch.pow(cos_theta, 2)) phi_theta = cos_theta * self.cos_m - sine * self.sin_m #cos(theta+m) phi_theta = torch.where(cos_theta > self.th, phi_theta, cos_theta - self.sin_m * self.m) index = torch.zeros_like(cos_theta, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) output = torch.where(index, phi_theta, cos_theta) if self.gamma == 0 and self.t == 1.: return F.cross_entropy(self.s*output, target) if self.t > 1: h_theta = self.t - 1 + self.t*cos_theta support_vecs_mask = (1 - index) * \ torch.lt(torch.masked_select(phi_theta, index).view(-1, 1).repeat(1, h_theta.shape[1]) - cos_theta, 0) output = torch.where(support_vecs_mask, h_theta, output) return F.cross_entropy(self.s*output, target) return focal_loss(F.cross_entropy(self.s*output, target, reduction='none'), self.gamma) @LOSSFUNC.register_module(module_name="am_softmax_ohem") class AMSoftmax_OHEM(AbstractLossClass): """Computes the AM-Softmax loss with cos or arc margin""" margin_types = ['cos', 'arc'] def __init__(self, margin_type='cos', gamma=0., m=0.5, s=30, t=1., ratio=1.): super(self).__init__() assert margin_type in AMSoftmaxLoss.margin_types self.margin_type = margin_type assert gamma >= 0 self.gamma = gamma assert m > 0 self.m = m assert s > 0 self.s = s self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) assert t >= 1 self.t = t self.ratio = ratio # ------- online hard example mining -------------------- def get_subidx(self,x,y,ratio): num_inst = x.size(0) num_hns = int(ratio * num_inst) x_ = x.clone() inst_losses = th.autograd.Variable(th.zeros(num_inst)).cuda() for idx, label in enumerate(y.data): inst_losses[idx] = -x_.data[idx, label] _, idxs = inst_losses.topk(num_hns) return idxs def forward(self, cos_theta, target): if self.margin_type == 'cos': phi_theta = cos_theta - self.m else: sine = torch.sqrt(1.0 - torch.pow(cos_theta, 2)) phi_theta = cos_theta * self.cos_m - sine * self.sin_m #cos(theta+m) phi_theta = torch.where(cos_theta > self.th, phi_theta, cos_theta - self.sin_m * self.m) index = torch.zeros_like(cos_theta, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) output = torch.where(index, phi_theta, cos_theta) out = F.log_softmax(output,dim=1) idxs = self.get_subidx(out,target,self.ratio) # select hard examples output2 = output.index_select(0, idxs) target2 = target.index_select(0, idxs) if self.gamma == 0 and self.t == 1.: return F.cross_entropy(self.s*output2, target2) if self.t > 1: h_theta = self.t - 1 + self.t*cos_theta support_vecs_mask = (1 - index) * \ torch.lt(torch.masked_select(phi_theta, index).view(-1, 1).repeat(1, h_theta.shape[1]) - cos_theta, 0) output2 = torch.where(support_vecs_mask, h_theta, output2) return F.cross_entropy(self.s*output2, target2) return focal_loss(F.cross_entropy(self.s*output2, target2, reduction='none'), self.gamma)