''' # author: Zhiyuan Yan # email: zhiyuanyan@link.cuhk.edu.cn # date: 2023-03-30 The code is designed for FWA and mainly modified from the below link: https://github.com/yuezunli/DSP-FWA ''' import os import sys import json import pickle import time import dlib import numpy as np from copy import deepcopy import cv2 import random from PIL import Image from skimage.util import random_noise from skimage.draw import polygon from scipy import linalg import heapq as hq import albumentations as A import torch from torch.autograd import Variable from torch.utils import data from torchvision import transforms as T import torchvision from dataset.utils.face_blend import * from dataset.utils.face_align import get_align_mat_new from dataset.utils.color_transfer import color_transfer from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend from dataset.utils.face_aug import aug_one_im, change_res from dataset.utils.image_ae import get_pretraiend_ae from dataset.utils.warp import warp_mask from dataset.utils import faceswap from scipy.ndimage.filters import gaussian_filter from skimage.transform import AffineTransform, warp from dataset.abstract_dataset import DeepfakeAbstractBaseDataset # Define face detector and predictor models face_detector = dlib.get_frontal_face_detector() predictor_path = 'preprocessing/dlib_tools/shape_predictor_81_face_landmarks.dat' face_predictor = dlib.shape_predictor(predictor_path) mean_face_x = np.array([ 0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124, 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036, 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918, 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149, 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721, 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874, 0.553364, 0.490127, 0.42689]) mean_face_y = np.array([ 0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891, 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326, 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733, 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099, 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805, 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746, 0.784792, 0.824182, 0.831803, 0.824182]) landmarks_2D = np.stack([mean_face_x, mean_face_y], axis=1) class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform): def apply(self,img,**params): return self.randomdownscale(img) def randomdownscale(self,img): keep_ratio=True keep_input_shape=True H,W,C=img.shape ratio_list=[2,4] r=ratio_list[np.random.randint(len(ratio_list))] img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST) if keep_input_shape: img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR) return img_ds def umeyama( src, dst, estimate_scale ): """Estimate N-D similarity transformation with or without scaling. Parameters ---------- src : (M, N) array Source coordinates. dst : (M, N) array Destination coordinates. estimate_scale : bool Whether to estimate scaling factor. Returns ------- T : (N + 1, N + 1) The homogeneous similarity transformation matrix. The matrix contains NaN values only if the problem is not well-conditioned. References ---------- .. [1] "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 """ num = src.shape[0] dim = src.shape[1] # Compute mean of src and dst. src_mean = src.mean(axis=0) dst_mean = dst.mean(axis=0) # Subtract mean from src and dst. src_demean = src - src_mean dst_demean = dst - dst_mean # Eq. (38). A = np.dot(dst_demean.T, src_demean) / num # Eq. (39). d = np.ones((dim,), dtype=np.double) if np.linalg.det(A) < 0: d[dim - 1] = -1 T = np.eye(dim + 1, dtype=np.double) U, S, V = np.linalg.svd(A) # Eq. (40) and (43). rank = np.linalg.matrix_rank(A) if rank == 0: return np.nan * T elif rank == dim - 1: if np.linalg.det(U) * np.linalg.det(V) > 0: T[:dim, :dim] = np.dot(U, V) else: s = d[dim - 1] d[dim - 1] = -1 T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V)) d[dim - 1] = s else: T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V.T)) if estimate_scale: # Eq. (41) and (42). scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d) else: scale = 1.0 T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T) T[:dim, :dim] *= scale return T def shape_to_np(shape, dtype="int"): # initialize the list of (x, y)-coordinates coords = np.zeros((68, 2), dtype=dtype) # loop over the 68 facial landmarks and convert them # to a 2-tuple of (x, y)-coordinates for i in range(0, 68): coords[i] = (shape.part(i).x, shape.part(i).y) # return the list of (x, y)-coordinates return coords from skimage.transform import AffineTransform, warp def get_warped_face(face, landmarks, tform): """ Apply the given affine transformation to the face and landmarks. Args: face (np.ndarray): The face image to be transformed. landmarks (np.ndarray): The facial landmarks to be transformed. tform (AffineTransform): The transformation to apply. Returns: warped_face (np.ndarray): The transformed face image. warped_landmarks (np.ndarray): The transformed facial landmarks. """ # Apply the transformation to the face warped_face = warp(face, tform.inverse, output_shape=face.shape) warped_face = (warped_face * 255).astype(np.uint8) # Apply the transformation to the landmarks warped_landmarks = tform.inverse(landmarks) return warped_face, warped_landmarks def warp_face_within_landmarks(face, landmarks, tform): """ Apply the given affine transformation to the face and landmarks, and retain only the area within the landmarks. Args: face (np.ndarray): The face image to be transformed. landmarks (np.ndarray): The facial landmarks to be transformed. tform (AffineTransform): The transformation to apply. Returns: warped_face (np.ndarray): The transformed face image. warped_landmarks (np.ndarray): The transformed facial landmarks. """ # Apply the transformation to the face warped_face = warp(face, tform.inverse, output_shape=face.shape) warped_face = (warped_face * 255).astype(np.uint8) # Apply the transformation to the landmarks warped_landmarks = np.linalg.inv(landmarks) # Generate a mask based on the landmarks rr, cc = polygon(warped_landmarks[:, 1], warped_landmarks[:, 0]) mask = np.zeros_like(warped_face, dtype=np.uint8) mask[rr, cc] = 1 # Apply the mask to the face warped_face *= mask return warped_face, warped_landmarks def get_2d_aligned_face(image, mat, size, padding=[0, 0]): mat = mat * size mat[0, 2] += padding[0] mat[1, 2] += padding[1] return cv2.warpAffine(image, mat, (size + 2 * padding[0], size + 2 * padding[1])) def get_2d_aligned_landmarks(face_cache, aligned_face_size=256, padding=(0, 0)): mat, points = face_cache # Mapping landmarks to aligned face pred_ = np.concatenate([points, np.ones((points.shape[0], 1))], axis=-1) pred_ = np.transpose(pred_) mat = mat * aligned_face_size mat[0, 2] += padding[0] mat[1, 2] += padding[1] aligned_shape = np.dot(mat, pred_) aligned_shape = np.transpose(aligned_shape[:2, :]) return aligned_shape def get_aligned_face_and_landmarks(im, face_cache, aligned_face_size = 256, padding=(0, 0)): """ get all aligned faces and landmarks of all images :param imgs: origin images :param fa: face_alignment package :return: """ aligned_cur_shapes = [] aligned_cur_im = [] for mat, points in face_cache: # Get transform matrix aligned_face = get_2d_aligned_face(im, mat, aligned_face_size, padding) aligned_shape = get_2d_aligned_landmarks([mat, points], aligned_face_size, padding) aligned_cur_shapes.append(aligned_shape) aligned_cur_im.append(aligned_face) return aligned_cur_im, aligned_cur_shapes def face_warp(im, face, trans_matrix, size, padding): new_face = np.clip(face, 0, 255).astype(im.dtype) image_size = im.shape[1], im.shape[0] tmp_matrix = trans_matrix * size delta_matrix = np.array([[0., 0., padding[0]*1.0], [0., 0., padding[1]*1.0]]) tmp_matrix = tmp_matrix + delta_matrix # Warp the new face onto a blank canvas warped_face = np.zeros_like(im) cv2.warpAffine(new_face, tmp_matrix, image_size, warped_face, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT) # Create a mask of the warped face mask = (warped_face > 0).astype(np.uint8) # Blend the warped face with the original image new_image = im * (1 - mask) + warped_face * mask return new_image, mask def get_face_loc(im, face_detector, scale=0): """ get face locations, color order of images is rgb """ faces = face_detector(np.uint8(im), scale) face_list = [] if faces is not None or len(faces) > 0: for i, d in enumerate(faces): try: face_list.append([d.left(), d.top(), d.right(), d.bottom()]) except: face_list.append([d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom()]) return face_list def align(im, face_detector, lmark_predictor, scale=0): # This version we handle all faces in view # channel order rgb im = np.uint8(im) faces = face_detector(im, scale) face_list = [] if faces is not None or len(faces) > 0: for pred in faces: try: points = shape_to_np(lmark_predictor(im, pred)) except: points = shape_to_np(lmark_predictor(im, pred.rect)) trans_matrix = umeyama(points[17:], landmarks_2D, True)[0:2] face_list.append([trans_matrix, points]) return face_list class FWABlendDataset(DeepfakeAbstractBaseDataset): def __init__(self, config=None): super().__init__(config, mode='train') self.transforms = T.Compose([ T.ToTensor(), T.Normalize(mean=config['mean'], std=config['std']) ]) self.resolution = config['resolution'] def blended_aug(self, im): transform = A.Compose([ A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3), A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3), A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3), A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5) ]) # Apply transformations im_aug = transform(image=im) return im_aug['image'] def data_aug(self, im): """ Apply data augmentation on the input image using albumentations. """ transform = A.Compose([ A.Compose([ A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3), A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1), A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1), ],p=1), A.OneOf([ RandomDownScale(p=1), A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1), ],p=1), ], p=1.) # Apply transformations im_aug = transform(image=im) return im_aug['image'] def blend_images(self, img_path): #im = cv2.imread(img_path) im = np.array(self.load_rgb(img_path)) # Get the alignment of the head face_cache = align(im, face_detector, face_predictor) # Get the aligned face and landmarks aligned_im_head, aligned_shape = get_aligned_face_and_landmarks(im, face_cache) # If no faces were detected in the image, return None (or any suitable value) if len(aligned_im_head) == 0 or len(aligned_shape) == 0: return None, None aligned_im_head = aligned_im_head[0] aligned_shape = aligned_shape[0] # Apply transformations to the face scale_factor = random.choice([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]) scaled_face = cv2.resize(aligned_im_head, (0, 0), fx=scale_factor, fy=scale_factor) # Apply Gaussian blur to the scaled face blurred_face = cv2.GaussianBlur(scaled_face, (5, 5), 0) # Resize the processed image back to the original size resized_face = cv2.resize(blurred_face, (aligned_im_head.shape[1], aligned_im_head.shape[0])) # Generate a random facial mask mask = get_mask(aligned_shape.astype(np.float32), resized_face, std=20, deform=True) # Apply the mask to the resized face masked_face = cv2.bitwise_and(resized_face, resized_face, mask=mask) # do aug before warp im = np.array(self.blended_aug(im)) # Warp the face back to the original image im, masked_face = face_warp(im, masked_face, face_cache[0][0], self.resolution, [0, 0]) shape = get_2d_aligned_landmarks(face_cache[0], self.resolution, [0, 0]) return im, masked_face def process_images(self, img_path, index): """ Process an image following the data generation pipeline. """ blended_im, mask = self.blend_images(img_path) # Prepare images and titles for the combined image imid_fg = np.array(self.load_rgb(img_path)) imid_fg = np.array(self.data_aug(imid_fg)) if blended_im is None or mask is None: return imid_fg, None # images = [ # imid_fg, # np.where(mask.astype(np.uint8)>0, 255, 0), # blended_im, # ] # titles = ["Image", "Mask", "Blended Image"] # # Save the combined image # os.makedirs('fwa_examples_2', exist_ok=True) # self.save_combined_image(images, titles, index, f'fwa_examples_2/combined_image_{index}.png') return imid_fg, blended_im def post_proc(self, img): ''' if self.mode == 'train': #if np.random.rand() < 0.5: # img = random_add_noise(img) #add_gaussian_noise(img) if np.random.rand() < 0.5: #img, _ = change_res(img) img = gaussian_blur(img) ''' img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) im_aug = self.blended_aug(img) im_aug = Image.fromarray(np.uint8(img)) im_aug = self.transforms(im_aug) return im_aug @staticmethod def save_combined_image(images, titles, index, save_path): """ Save the combined image with titles for each single image. Args: images (List[np.ndarray]): List of images to be combined. titles (List[str]): List of titles for each image. index (int): Index of the image. save_path (str): Path to save the combined image. """ # Determine the maximum height and width among the images max_height = max(image.shape[0] for image in images) max_width = max(image.shape[1] for image in images) # Create the canvas canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8) # Place the images and titles on the canvas current_height = 0 for image, title in zip(images, titles): height, width = image.shape[:2] # Check if image has a third dimension (color channels) if image.ndim == 2: # If not, add a third dimension image = np.tile(image[..., None], (1, 1, 3)) canvas[current_height : current_height + height, :width] = image cv2.putText( canvas, title, (10, current_height + 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2 ) current_height += height # Save the combined image cv2.imwrite(save_path, canvas) def __getitem__(self, index): """ Get an item from the dataset by index. """ one_img_path = self.data_dict['image'][index] try: label = 1 if one_img_path.split('/')[6]=='manipulated_sequences' else 0 except Exception as e: label = 1 if one_img_path.split('\\')[6] == 'manipulated_sequences' else 0 blend_label = 1 imid, manipulate_img = self.process_images(one_img_path, index) if manipulate_img is None: manipulate_img = deepcopy(imid) blend_label = label manipulate_img = self.post_proc(manipulate_img) imid = self.post_proc(imid) # blend data fake_data_tuple = (manipulate_img, blend_label) # original data real_data_tuple = (imid, label) return fake_data_tuple, real_data_tuple @staticmethod def collate_fn(batch): """ Collates batches of data and shuffles the images. """ # Unzip the batch fake_data, real_data = zip(*batch) # Unzip the fake and real data fake_images, fake_labels = zip(*fake_data) real_images, real_labels = zip(*real_data) # Combine fake and real data images = torch.stack(fake_images + real_images) labels = torch.tensor(fake_labels + real_labels) # Combine images, boundaries, and labels into tuples combined_data = list(zip(images, labels)) # Shuffle the combined data random.shuffle(combined_data) # Unzip the shuffled data images, labels = zip(*combined_data) # Create the data dictionary data_dict = { 'image': torch.stack(images), 'label': torch.tensor(labels), 'mask': None, 'landmark': None # Add your landmark data if available } return data_dict