''' # author: Zhiyuan Yan # email: zhiyuanyan@link.cuhk.edu.cn # date: 2024-01-26 The code is designed for self-blending method (SBI, CVPR 2024). ''' import sys sys.path.append('.') import cv2 import yaml import torch import numpy as np from copy import deepcopy import albumentations as A from training.dataset.albu import IsotropicResize from training.dataset.abstract_dataset import DeepfakeAbstractBaseDataset from training.dataset.sbi_api import SBI_API class SBIDataset(DeepfakeAbstractBaseDataset): def __init__(self, config=None, mode='train'): super().__init__(config, mode) # Get real lists # Fix the label of real images to be 0 self.real_imglist = [(img, label) for img, label in zip(self.image_list, self.label_list) if label == 0] # Init SBI self.sbi = SBI_API(phase=mode,image_size=config['resolution']) # Init data augmentation method self.transform = self.init_data_aug_method() def __getitem__(self, index): # Get the real image paths and labels real_image_path, real_label = self.real_imglist[index] # Get the landmark paths for real images real_landmark_path = real_image_path.replace('frames', 'landmarks').replace('.png', '.npy') landmark = self.load_landmark(real_landmark_path).astype(np.int32) # Load the real images real_image = self.load_rgb(real_image_path) real_image = np.array(real_image) # Convert to numpy array # Generate the corresponding SBI sample fake_image, real_image = self.sbi(real_image, landmark) if fake_image is None: fake_image = deepcopy(real_image) fake_label = 0 else: fake_label = 1 # To tensor and normalize for fake and real images fake_image_trans = self.normalize(self.to_tensor(fake_image)) real_image_trans = self.normalize(self.to_tensor(real_image)) return {"fake": (fake_image_trans, fake_label), "real": (real_image_trans, real_label)} def __len__(self): return len(self.real_imglist) @staticmethod def collate_fn(batch): """ Collate a batch of data points. Args: batch (list): A list of tuples containing the image tensor and label tensor. Returns: A tuple containing the image tensor, the label tensor, the landmark tensor, and the mask tensor. """ # Separate the image, label, landmark, and mask tensors for fake and real data fake_images, fake_labels = zip(*[data["fake"] for data in batch]) real_images, real_labels = zip(*[data["real"] for data in batch]) # Stack the image, label, landmark, and mask tensors for fake and real data fake_images = torch.stack(fake_images, dim=0) fake_labels = torch.LongTensor(fake_labels) real_images = torch.stack(real_images, dim=0) real_labels = torch.LongTensor(real_labels) # Combine the fake and real tensors and create a dictionary of the tensors images = torch.cat([real_images, fake_images], dim=0) labels = torch.cat([real_labels, fake_labels], dim=0) data_dict = { 'image': images, 'label': labels, 'landmark': None, 'mask': None, } return data_dict def init_data_aug_method(self): trans = A.Compose([ A.HorizontalFlip(p=self.config['data_aug']['flip_prob']), A.Rotate(limit=self.config['data_aug']['rotate_limit'], p=self.config['data_aug']['rotate_prob']), A.GaussianBlur(blur_limit=self.config['data_aug']['blur_limit'], p=self.config['data_aug']['blur_prob']), A.OneOf([ IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC), IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR), IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR), ], p = 0 if self.config['with_landmark'] else 1), A.OneOf([ A.RandomBrightnessContrast(brightness_limit=self.config['data_aug']['brightness_limit'], contrast_limit=self.config['data_aug']['contrast_limit']), A.FancyPCA(), A.HueSaturationValue() ], p=0.5), A.ImageCompression(quality_lower=self.config['data_aug']['quality_lower'], quality_upper=self.config['data_aug']['quality_upper'], p=0.5) ], additional_targets={'real': 'sbi'}, ) return trans if __name__ == '__main__': with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/sbi.yaml', 'r') as f: config = yaml.safe_load(f) train_set = SBIDataset(config=config, mode='train') train_data_loader = \ torch.utils.data.DataLoader( dataset=train_set, batch_size=config['train_batchSize'], shuffle=True, num_workers=0, collate_fn=train_set.collate_fn, ) from tqdm import tqdm for iteration, batch in enumerate(tqdm(train_data_loader)): print(iteration) if iteration > 10: break