import numpy as np import cv2 # from core import randomex def random_normal(size=(1,), trunc_val=2.5): len = np.array(size).prod() result = np.empty((len,), dtype=np.float32) for i in range(len): while True: x = np.random.normal() if x >= -trunc_val and x <= trunc_val: break result[i] = (x / trunc_val) return result.reshape(size) def gen_warp_params(w, flip, rotation_range=[-10, 10], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None): if rnd_state is None: rnd_state = np.random rotation = rnd_state.uniform(rotation_range[0], rotation_range[1]) scale = rnd_state.uniform(1 + scale_range[0], 1 + scale_range[1]) tx = rnd_state.uniform(tx_range[0], tx_range[1]) ty = rnd_state.uniform(ty_range[0], ty_range[1]) p_flip = flip and rnd_state.randint(10) < 4 # random warp by grid cell_size = [w // (2**i) for i in range(1, 4)][rnd_state.randint(3)] cell_count = w // cell_size + 1 grid_points = np.linspace(0, w, cell_count) mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy() mapy = mapx.T mapx[1:-1, 1:-1] = mapx[1:-1, 1:-1] + \ random_normal( size=(cell_count-2, cell_count-2))*(cell_size*0.24) mapy[1:-1, 1:-1] = mapy[1:-1, 1:-1] + \ random_normal( size=(cell_count-2, cell_count-2))*(cell_size*0.24) half_cell_size = cell_size // 2 mapx = cv2.resize(mapx, (w+cell_size,)*2)[ half_cell_size:-half_cell_size-1, half_cell_size:-half_cell_size-1].astype(np.float32) mapy = cv2.resize(mapy, (w+cell_size,)*2)[ half_cell_size:-half_cell_size-1, half_cell_size:-half_cell_size-1].astype(np.float32) # random transform random_transform_mat = cv2.getRotationMatrix2D( (w // 2, w // 2), rotation, scale) random_transform_mat[:, 2] += (tx*w, ty*w) params = dict() params['mapx'] = mapx params['mapy'] = mapy params['rmat'] = random_transform_mat params['w'] = w params['flip'] = p_flip return params def warp_by_params(params, img, can_warp, can_transform, can_flip, border_replicate, cv2_inter=cv2.INTER_CUBIC): if can_warp: img = cv2.remap(img, params['mapx'], params['mapy'], cv2_inter) if can_transform: img = cv2.warpAffine(img, params['rmat'], (params['w'], params['w']), borderMode=( cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2_inter) if len(img.shape) == 2: img = img[..., None] if can_flip and params['flip']: img = img[:, ::-1, ...] return img from skimage.transform import PiecewiseAffineTransform, warp def random_deform(imageSize, nrows, ncols, mean=0, std=5): try: h, w, c = imageSize except: h, w = imageSize c = 1 rows = np.linspace(0, h, nrows).astype(np.int32) cols = np.linspace(0, w, ncols).astype(np.int32) rows, cols = np.meshgrid(rows, cols) anchors = np.vstack([rows.flat, cols.flat]).T assert anchors.shape[1] == 2 and anchors.shape[0] == ncols * nrows deformed = anchors + np.random.normal(mean, std, size=anchors.shape) #print(anchors) #print(deformed) np.clip(deformed[:,0], 0, h-1, deformed[:,0]) np.clip(deformed[:,1], 0, w-1, deformed[:,1]) return anchors.astype(np.float32), deformed.astype(np.float32) def piecewise_affine_transform(image, srcAnchor, tgtAnchor): trans = PiecewiseAffineTransform() trans.estimate(srcAnchor, tgtAnchor) # tform.estimate(from_.astype(np.float32), to_.astype( # np.float32)) # tform.estimate(from_, to_) # M = tform.params[0:2, :] warped = warp(image, trans) return warped def warp_mask(mask, std): ach, tgt_ach = random_deform(mask.shape, 4, 4, std=std) warped_mask = piecewise_affine_transform(mask, ach, tgt_ach) return (warped_mask*255).astype(np.uint8)