# author: Zhiyuan Yan # email: zhiyuanyan@link.cuhk.edu.cn # date: 2023-0706 # description: Abstract Class for the Deepfake Detector import abc import torch import torch.nn as nn from typing import Union class AbstractDetector(nn.Module, metaclass=abc.ABCMeta): """ All deepfake detectors should subclass this class. """ def __init__(self, config=None, load_param: Union[bool, str] = False): """ config: (dict) configurations for the model load_param: (False | True | Path(str)) False Do not read; True Read the default path; Path Read the required path """ super().__init__() @abc.abstractmethod def features(self, data_dict: dict) -> torch.tensor: """ Returns the features from the backbone given the input data. """ pass @abc.abstractmethod def forward(self, data_dict: dict, inference=False) -> dict: """ Forward pass through the model, returning the prediction dictionary. """ pass @abc.abstractmethod def classifier(self, features: torch.tensor) -> torch.tensor: """ Classifies the features into classes. """ pass @abc.abstractmethod def build_backbone(self, config): """ Builds the backbone of the model. """ pass @abc.abstractmethod def build_loss(self, config): """ Builds the loss function for the model. """ pass @abc.abstractmethod def get_losses(self, data_dict: dict, pred_dict: dict) -> dict: """ Returns the losses for the model. """ pass @abc.abstractmethod def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict: """ Returns the training metrics for the model. """ pass