import torch import torch.nn as nn import torch.nn.functional as F import os import sys class SeparableConv2d(nn.Module): def __init__(self, c_in, c_out, ks, stride=1, padding=0, dilation=1, bias=False): super(SeparableConv2d, self).__init__() self.c = nn.Conv2d(c_in, c_in, ks, stride, padding, dilation, groups=c_in, bias=bias) self.pointwise = nn.Conv2d(c_in, c_out, 1, 1, 0, 1, 1, bias=bias) def forward(self, x): x = self.c(x) x = self.pointwise(x) return x class Block(nn.Module): def __init__(self, c_in, c_out, reps, stride=1, start_with_relu=True, grow_first=True): super(Block, self).__init__() self.skip = None self.skip_bn = None if c_out != c_in or stride!= 1: self.skip = nn.Conv2d(c_in, c_out, 1, stride=stride, bias=False) self.skip_bn = nn.BatchNorm2d(c_out) self.relu = nn.ReLU(inplace=True) rep = [] c = c_in if grow_first: rep.append(self.relu) rep.append(SeparableConv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)) rep.append(nn.BatchNorm2d(c_out)) c = c_out for i in range(reps - 1): rep.append(self.relu) rep.append(SeparableConv2d(c, c, 3, stride=1, padding=1, bias=False)) rep.append(nn.BatchNorm2d(c)) if not grow_first: rep.append(self.relu) rep.append(SeparableConv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)) rep.append(nn.BatchNorm2d(c_out)) if not start_with_relu: rep = rep[1:] else: rep[0] = nn.ReLU(inplace=False) if stride != 1: rep.append(nn.MaxPool2d(3, stride, 1)) self.rep = nn.Sequential(*rep) def forward(self, inp): x = self.rep(inp) if self.skip is not None: y = self.skip(inp) y = self.skip_bn(y) else: y = inp x += y return x class RegressionMap(nn.Module): def __init__(self, c_in): super(RegressionMap, self).__init__() self.c = SeparableConv2d(c_in, 1, 3, stride=1, padding=1, bias=False) self.s = nn.Sigmoid() def forward(self, x): mask = self.c(x) mask = self.s(mask) return mask, None class TemplateMap(nn.Module): def __init__(self, c_in, templates): super(TemplateMap, self).__init__() self.c = Block(c_in, 364, 2, 2, start_with_relu=True, grow_first=False) self.l = nn.Linear(364, 10) self.relu = nn.ReLU(inplace=True) self.templates = templates def forward(self, x): v = self.c(x) v = self.relu(v) v = F.adaptive_avg_pool2d(v, (1,1)) v = v.view(v.size(0), -1) v = self.l(v) mask = torch.mm(v, self.templates.reshape(10,361)) mask = mask.reshape(x.shape[0], 1, 19, 19) return mask, v class PCATemplateMap(nn.Module): def __init__(self, templates): super(PCATemplateMap, self).__init__() self.templates = templates def forward(self, x): fe = x.view(x.shape[0], x.shape[1], x.shape[2]*x.shape[3]) fe = torch.transpose(fe, 1, 2) mu = torch.mean(fe, 2, keepdim=True) fea_diff = fe - mu cov_fea = torch.bmm(fea_diff, torch.transpose(fea_diff, 1, 2)) B = self.templates.reshape(1, 10, 361).repeat(x.shape[0], 1, 1) D = torch.bmm(torch.bmm(B, cov_fea), torch.transpose(B, 1, 2)) eigen_value, eigen_vector = D.symeig(eigenvectors=True) index = torch.tensor([9]).cuda() eigen = torch.index_select(eigen_vector, 2, index) v = eigen.squeeze(-1) mask = torch.mm(v, self.templates.reshape(10, 361)) mask = mask.reshape(x.shape[0], 1, 19, 19) return mask, v class Xception(nn.Module): """ Xception optimized for the ImageNet dataset, as specified in https://arxiv.org/pdf/1610.02357.pdf """ def __init__(self, maptype, templates, num_classes=1000): super(Xception, self).__init__() self.num_classes = num_classes self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False) self.bn1 = nn.BatchNorm2d(32) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32,64,3,bias=False) self.bn2 = nn.BatchNorm2d(64) self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True) self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True) self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True) self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True) self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False) self.conv3 = SeparableConv2d(1024,1536,3,1,1) self.bn3 = nn.BatchNorm2d(1536) self.conv4 = SeparableConv2d(1536,2048,3,1,1) self.bn4 = nn.BatchNorm2d(2048) self.last_linear = nn.Linear(2048, num_classes) if maptype == 'none': self.map = [1, None] elif maptype == 'reg': self.map = RegressionMap(728) elif maptype == 'tmp': self.map = TemplateMap(728, templates) elif maptype == 'pca_tmp': self.map = PCATemplateMap(728) else: print('Unknown map type: `{0}`'.format(maptype)) sys.exit() def features(self, input): x = self.conv1(input) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.block1(x) x = self.block2(x) x = self.block3(x) x = self.block4(x) x = self.block5(x) x = self.block6(x) x = self.block7(x) mask, vec = self.map(x) x = x * mask x = self.block8(x) x = self.block9(x) x = self.block10(x) x = self.block11(x) x = self.block12(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.conv4(x) x = self.bn4(x) return x, mask, vec def logits(self, features): x = self.relu(features) x = F.adaptive_avg_pool2d(x, (1, 1)) x = x.view(x.size(0), -1) x = self.last_linear(x) return x def forward(self, input): x, mask, vec = self.features(input) x = self.logits(x) return x, mask, vec def init_weights(m): classname = m.__class__.__name__ if classname.find('SeparableConv2d') != -1: m.c.weight.data.normal_(0.0, 0.01) if m.c.bias is not None: m.c.bias.data.fill_(0) m.pointwise.weight.data.normal_(0.0, 0.01) if m.pointwise.bias is not None: m.pointwise.bias.data.fill_(0) elif classname.find('Conv') != -1 or classname.find('Linear') != -1: m.weight.data.normal_(0.0, 0.01) if m.bias is not None: m.bias.data.fill_(0) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.01) m.bias.data.fill_(0) elif classname.find('LSTM') != -1: for i in m._parameters: if i.__class__.__name__.find('weight') != -1: i.data.normal_(0.0, 0.01) elif i.__class__.__name__.find('bias') != -1: i.bias.data.fill_(0) class Model: def __init__(self, maptype='None', templates=None, num_classes=2, load_pretrain=True): model = Xception(maptype, templates, num_classes=num_classes) if load_pretrain: state_dict = torch.load('./xception-b5690688.pth') for name, weights in state_dict: if 'pointwise' in name: state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1) del state_dict['fc.weight'] del state_dict['fc.bias'] model.load_state_dict(state_dict, False) else: model.apply(init_weights) self.model = model def save(self, epoch, optim, model_dir): state = {'net': self.model.state_dict(), 'optim': optim.state_dict()} torch.save(state, '{0}/{1:06d}.tar'.format(model_dir, epoch)) print('Saved model `{0}`'.format(epoch)) def load(self, epoch, model_dir): filename = '{0}{1:06d}.tar'.format(model_dir, epoch) print('Loading model from {0}'.format(filename)) if os.path.exists(filename): state = torch.load(filename) self.model.load_state_dict(state['net']) else: print('Failed to load model from {0}'.format(filename))