# author: Zhiyuan Yan # email: zhiyuanyan@link.cuhk.edu.cn # date: 2023-03-30 # description: Abstract Base Class for all types of deepfake datasets. import sys import lmdb sys.path.append('.') import os import math import yaml import glob import json import numpy as np from copy import deepcopy import cv2 import random from PIL import Image from collections import defaultdict import torch from torch.autograd import Variable from torch.utils import data from torchvision import transforms as T import albumentations as A from .albu import IsotropicResize FFpp_pool=['FaceForensics++','FaceShifter','DeepFakeDetection','FF-DF','FF-F2F','FF-FS','FF-NT']# def all_in_pool(inputs,pool): for each in inputs: if each not in pool: return False return True class DeepfakeAbstractBaseDataset(data.Dataset): """ Abstract base class for all deepfake datasets. """ def __init__(self, config=None, mode='train'): """Initializes the dataset object. Args: config (dict): A dictionary containing configuration parameters. mode (str): A string indicating the mode (train or test). Raises: NotImplementedError: If mode is not train or test. """ # Set the configuration and mode self.config = config self.mode = mode self.compression = config['compression'] self.frame_num = config['frame_num'][mode] # Check if 'video_mode' exists in config, otherwise set video_level to False self.video_level = config.get('video_mode', False) self.clip_size = config.get('clip_size', None) self.lmdb = config.get('lmdb', False) # Dataset dictionary self.image_list = [] self.label_list = [] # Set the dataset dictionary based on the mode if mode == 'train': dataset_list = config['train_dataset'] # Training data should be collected together for training image_list, label_list = [], [] for one_data in dataset_list: tmp_image, tmp_label, tmp_name = self.collect_img_and_label_for_one_dataset(one_data) image_list.extend(tmp_image) label_list.extend(tmp_label) if self.lmdb: if len(dataset_list)>1: if all_in_pool(dataset_list,FFpp_pool): lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb") self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False) else: raise ValueError('Training with multiple dataset and lmdb is not implemented yet.') else: lmdb_path = os.path.join(config['lmdb_dir'], f"{dataset_list[0] if dataset_list[0] not in FFpp_pool else 'FaceForensics++'}_lmdb") self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False) elif mode == 'test': one_data = config['test_dataset'] # Test dataset should be evaluated separately. So collect only one dataset each time image_list, label_list, name_list = self.collect_img_and_label_for_one_dataset(one_data) if self.lmdb: lmdb_path = os.path.join(config['lmdb_dir'], f"{one_data}_lmdb" if one_data not in FFpp_pool else 'FaceForensics++_lmdb') self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False) else: raise NotImplementedError('Only train and test modes are supported.') assert len(image_list)!=0 and len(label_list)!=0, f"Collect nothing for {mode} mode!" self.image_list, self.label_list = image_list, label_list # Create a dictionary containing the image and label lists self.data_dict = { 'image': self.image_list, 'label': self.label_list, } self.transform = self.init_data_aug_method() def init_data_aug_method(self): trans = A.Compose([ A.HorizontalFlip(p=self.config['data_aug']['flip_prob']), A.Rotate(limit=self.config['data_aug']['rotate_limit'], p=self.config['data_aug']['rotate_prob']), A.GaussianBlur(blur_limit=self.config['data_aug']['blur_limit'], p=self.config['data_aug']['blur_prob']), A.OneOf([ IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC), IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR), IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR), ], p = 0 if self.config['with_landmark'] else 1), A.OneOf([ A.RandomBrightnessContrast(brightness_limit=self.config['data_aug']['brightness_limit'], contrast_limit=self.config['data_aug']['contrast_limit']), A.FancyPCA(), A.HueSaturationValue() ], p=0.5), A.ImageCompression(quality_lower=self.config['data_aug']['quality_lower'], quality_upper=self.config['data_aug']['quality_upper'], p=0.5) ], keypoint_params=A.KeypointParams(format='xy') if self.config['with_landmark'] else None ) return trans def rescale_landmarks(self, landmarks, original_size=256, new_size=224): scale_factor = new_size / original_size rescaled_landmarks = landmarks * scale_factor return rescaled_landmarks def collect_img_and_label_for_one_dataset(self, dataset_name: str): """Collects image and label lists. Args: dataset_name (str): A list containing one dataset information. e.g., 'FF-F2F' Returns: list: A list of image paths. list: A list of labels. Raises: ValueError: If image paths or labels are not found. NotImplementedError: If the dataset is not implemented yet. """ # Initialize the label and frame path lists label_list = [] frame_path_list = [] # Record video name for video-level metrics video_name_list = [] # Try to get the dataset information from the JSON file if not os.path.exists(self.config['dataset_json_folder']): self.config['dataset_json_folder'] = self.config['dataset_json_folder'].replace('/Youtu_Pangu_Security_Public', '/Youtu_Pangu_Security/public') try: with open(os.path.join(self.config['dataset_json_folder'], dataset_name + '.json'), 'r') as f: dataset_info = json.load(f) except Exception as e: print(e) raise ValueError(f'dataset {dataset_name} not exist!') # If JSON file exists, do the following data collection # FIXME: ugly, need to be modified here. cp = None if dataset_name == 'FaceForensics++_c40': dataset_name = 'FaceForensics++' cp = 'c40' elif dataset_name == 'FF-DF_c40': dataset_name = 'FF-DF' cp = 'c40' elif dataset_name == 'FF-F2F_c40': dataset_name = 'FF-F2F' cp = 'c40' elif dataset_name == 'FF-FS_c40': dataset_name = 'FF-FS' cp = 'c40' elif dataset_name == 'FF-NT_c40': dataset_name = 'FF-NT' cp = 'c40' # Get the information for the current dataset for label in dataset_info[dataset_name]: sub_dataset_info = dataset_info[dataset_name][label][self.mode] # Special case for FaceForensics++ and DeepFakeDetection, choose the compression type if cp == None and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']: sub_dataset_info = sub_dataset_info[self.compression] elif cp == 'c40' and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']: sub_dataset_info = sub_dataset_info['c40'] # Iterate over the videos in the dataset for video_name, video_info in sub_dataset_info.items(): # Unique video name unique_video_name = video_info['label'] + '_' + video_name # Get the label and frame paths for the current video if video_info['label'] not in self.config['label_dict']: raise ValueError(f'Label {video_info["label"]} is not found in the configuration file.') label = self.config['label_dict'][video_info['label']] frame_paths = video_info['frames'] # sorted video path to the lists if '\\' in frame_paths[0]: frame_paths = sorted(frame_paths, key=lambda x: int(x.split('\\')[-1].split('.')[0])) else: frame_paths = sorted(frame_paths, key=lambda x: int(x.split('/')[-1].split('.')[0])) # Consider the case when the actual number of frames (e.g., 270) is larger than the specified (i.e., self.frame_num=32) # In this case, we select self.frame_num frames from the original 270 frames total_frames = len(frame_paths) if self.frame_num < total_frames: total_frames = self.frame_num if self.video_level: # Select clip_size continuous frames start_frame = random.randint(0, total_frames - self.frame_num) if self.mode == 'train' else 0 frame_paths = frame_paths[start_frame:start_frame + self.frame_num] # update total_frames else: # Select self.frame_num frames evenly distributed throughout the video step = total_frames // self.frame_num frame_paths = [frame_paths[i] for i in range(0, total_frames, step)][:self.frame_num] # If video-level methods, crop clips from the selected frames if needed if self.video_level: if self.clip_size is None: raise ValueError('clip_size must be specified when video_level is True.') # Check if the number of total frames is greater than or equal to clip_size if total_frames >= self.clip_size: # Initialize an empty list to store the selected continuous frames selected_clips = [] # Calculate the number of clips to select num_clips = total_frames // self.clip_size if num_clips > 1: # Calculate the step size between each clip clip_step = (total_frames - self.clip_size) // (num_clips - 1) # Select clip_size continuous frames from each part of the video for i in range(num_clips): # Ensure start_frame + self.clip_size - 1 does not exceed the index of the last frame start_frame = random.randrange(i * clip_step, min((i + 1) * clip_step, total_frames - self.clip_size + 1)) if self.mode == 'train' else i * clip_step continuous_frames = frame_paths[start_frame:start_frame + self.clip_size] assert len(continuous_frames) == self.clip_size, 'clip_size is not equal to the length of frame_path_list' selected_clips.append(continuous_frames) else: start_frame = random.randrange(0, total_frames - self.clip_size + 1) if self.mode == 'train' else 0 continuous_frames = frame_paths[start_frame:start_frame + self.clip_size] assert len(continuous_frames)==self.clip_size, 'clip_size is not equal to the length of frame_path_list' selected_clips.append(continuous_frames) # Append the list of selected clips and append the label label_list.extend([label] * len(selected_clips)) frame_path_list.extend(selected_clips) # video name save video_name_list.extend([unique_video_name] * len(selected_clips)) else: print(f"Skipping video {unique_video_name} because it has less than clip_size ({self.clip_size}) frames ({total_frames}).") # Otherwise, extend the label and frame paths to the lists according to the number of frames else: # Extend the label and frame paths to the lists according to the number of frames label_list.extend([label] * total_frames) frame_path_list.extend(frame_paths) # video name save video_name_list.extend([unique_video_name] * len(frame_paths)) # Shuffle the label and frame path lists in the same order shuffled = list(zip(label_list, frame_path_list, video_name_list)) random.shuffle(shuffled) label_list, frame_path_list, video_name_list = zip(*shuffled) return frame_path_list, label_list, video_name_list def load_rgb(self, file_path): """ Load an RGB image from a file path and resize it to a specified resolution. Args: file_path: A string indicating the path to the image file. Returns: An Image object containing the loaded and resized image. Raises: ValueError: If the loaded image is None. """ size = self.config['resolution'] # if self.mode == "train" else self.config['resolution'] if not self.lmdb: if not file_path[0] == '.': file_path = f'{self.config["rgb_dir"]}'+file_path assert os.path.exists(file_path), f"{file_path} does not exist" img = cv2.imread(file_path) if img is None: raise ValueError('Loaded image is None: {}'.format(file_path)) elif self.lmdb: with self.env.begin(write=False) as txn: # transfer the path format from rgb-path to lmdb-key if file_path[0]=='.': file_path=file_path.replace('./datasets\\','') image_bin = txn.get(file_path.encode()) image_buf = np.frombuffer(image_bin, dtype=np.uint8) img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC) return Image.fromarray(np.array(img, dtype=np.uint8)) def load_mask(self, file_path): """ Load a binary mask image from a file path and resize it to a specified resolution. Args: file_path: A string indicating the path to the mask file. Returns: A numpy array containing the loaded and resized mask. Raises: None. """ size = self.config['resolution'] if file_path is None: return np.zeros((size, size, 1)) if not self.lmdb: if not file_path[0] == '.': file_path = f'./{self.config["rgb_dir"]}\\'+file_path if os.path.exists(file_path): mask = cv2.imread(file_path, 0) if mask is None: mask = np.zeros((size, size)) else: return np.zeros((size, size, 1)) else: with self.env.begin(write=False) as txn: # transfer the path format from rgb-path to lmdb-key if file_path[0]=='.': file_path=file_path.replace('./datasets\\','') image_bin = txn.get(file_path.encode()) if image_bin is None: mask = np.zeros((size, size,3)) else: image_buf = np.frombuffer(image_bin, dtype=np.uint8) # cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图 mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR) mask = cv2.resize(mask, (size, size)) / 255 mask = np.expand_dims(mask, axis=2) return np.float32(mask) def load_landmark(self, file_path): """ Load 2D facial landmarks from a file path. Args: file_path: A string indicating the path to the landmark file. Returns: A numpy array containing the loaded landmarks. Raises: None. """ if file_path is None: return np.zeros((81, 2)) if not self.lmdb: if not file_path[0] == '.': file_path = f'./{self.config["rgb_dir"]}\\'+file_path if os.path.exists(file_path): landmark = np.load(file_path) else: return np.zeros((81, 2)) else: with self.env.begin(write=False) as txn: # transfer the path format from rgb-path to lmdb-key if file_path[0]=='.': file_path=file_path.replace('./datasets\\','') binary = txn.get(file_path.encode()) landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2)) landmark=self.rescale_landmarks(np.float32(landmark), original_size=256, new_size=self.config['resolution']) return landmark def to_tensor(self, img): """ Convert an image to a PyTorch tensor. """ return T.ToTensor()(img) def normalize(self, img): """ Normalize an image. """ mean = self.config['mean'] std = self.config['std'] normalize = T.Normalize(mean=mean, std=std) return normalize(img) def data_aug(self, img, landmark=None, mask=None, augmentation_seed=None): """ Apply data augmentation to an image, landmark, and mask. Args: img: An Image object containing the image to be augmented. landmark: A numpy array containing the 2D facial landmarks to be augmented. mask: A numpy array containing the binary mask to be augmented. Returns: The augmented image, landmark, and mask. """ # Set the seed for the random number generator if augmentation_seed is not None: random.seed(augmentation_seed) np.random.seed(augmentation_seed) # Create a dictionary of arguments kwargs = {'image': img} # Check if the landmark and mask are not None if landmark is not None: kwargs['keypoints'] = landmark kwargs['keypoint_params'] = A.KeypointParams(format='xy') if mask is not None: mask = mask.squeeze(2) if mask.max() > 0: kwargs['mask'] = mask # Apply data augmentation transformed = self.transform(**kwargs) # Get the augmented image, landmark, and mask augmented_img = transformed['image'] augmented_landmark = transformed.get('keypoints') augmented_mask = transformed.get('mask',mask) # Convert the augmented landmark to a numpy array if augmented_landmark is not None: augmented_landmark = np.array(augmented_landmark) # Reset the seeds to ensure different transformations for different videos if augmentation_seed is not None: random.seed() np.random.seed() return augmented_img, augmented_landmark, augmented_mask def __getitem__(self, index, no_norm=False): """ Returns the data point at the given index. Args: index (int): The index of the data point. Returns: A tuple containing the image tensor, the label tensor, the landmark tensor, and the mask tensor. """ # Get the image paths and label image_paths = self.data_dict['image'][index] label = self.data_dict['label'][index] if not isinstance(image_paths, list): image_paths = [image_paths] # for the image-level IO, only one frame is used image_tensors = [] landmark_tensors = [] mask_tensors = [] augmentation_seed = None for image_path in image_paths: # Initialize a new seed for data augmentation at the start of each video if self.video_level and image_path == image_paths[0]: augmentation_seed = random.randint(0, 2**32 - 1) # Get the mask and landmark paths mask_path = image_path.replace('frames', 'masks') # Use .png for mask landmark_path = image_path.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark # Load the image try: image = self.load_rgb(image_path) except Exception as e: # Skip this image and return the first one print(f"Error loading image at index {index}: {e}") return self.__getitem__(0) image = np.array(image) # Convert to numpy array for data augmentation # Load mask and landmark (if needed) if self.config['with_mask']: mask = self.load_mask(mask_path) else: mask = None if self.config['with_landmark']: landmarks = self.load_landmark(landmark_path) else: landmarks = None # Do Data Augmentation if self.mode == 'train' and self.config['use_data_augmentation']: image_trans, landmarks_trans, mask_trans = self.data_aug(image, landmarks, mask, augmentation_seed) else: image_trans, landmarks_trans, mask_trans = deepcopy(image), deepcopy(landmarks), deepcopy(mask) # To tensor and normalize if not no_norm: image_trans = self.normalize(self.to_tensor(image_trans)) if self.config['with_landmark']: landmarks_trans = torch.from_numpy(landmarks) if self.config['with_mask']: mask_trans = torch.from_numpy(mask_trans) image_tensors.append(image_trans) landmark_tensors.append(landmarks_trans) mask_tensors.append(mask_trans) if self.video_level: # Stack image tensors along a new dimension (time) image_tensors = torch.stack(image_tensors, dim=0) # Stack landmark and mask tensors along a new dimension (time) if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors): landmark_tensors = torch.stack(landmark_tensors, dim=0) if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors): mask_tensors = torch.stack(mask_tensors, dim=0) else: # Get the first image tensor image_tensors = image_tensors[0] # Get the first landmark and mask tensors if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors): landmark_tensors = landmark_tensors[0] if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors): mask_tensors = mask_tensors[0] return image_tensors, label, landmark_tensors, mask_tensors @staticmethod def collate_fn(batch): """ Collate a batch of data points. Args: batch (list): A list of tuples containing the image tensor, the label tensor, the landmark tensor, and the mask tensor. Returns: A tuple containing the image tensor, the label tensor, the landmark tensor, and the mask tensor. """ # Separate the image, label, landmark, and mask tensors images, labels, landmarks, masks = zip(*batch) # Stack the image, label, landmark, and mask tensors images = torch.stack(images, dim=0) labels = torch.LongTensor(labels) # Special case for landmarks and masks if they are None if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmarks): landmarks = torch.stack(landmarks, dim=0) else: landmarks = None if not any(m is None or (isinstance(m, list) and None in m) for m in masks): masks = torch.stack(masks, dim=0) else: masks = None # Create a dictionary of the tensors data_dict = {} data_dict['image'] = images data_dict['label'] = labels data_dict['landmark'] = landmarks data_dict['mask'] = masks return data_dict def __len__(self): """ Return the length of the dataset. Args: None. Returns: An integer indicating the length of the dataset. Raises: AssertionError: If the number of images and labels in the dataset are not equal. """ assert len(self.image_list) == len(self.label_list), 'Number of images and labels are not equal' return len(self.image_list) if __name__ == "__main__": with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/video_baseline.yaml', 'r') as f: config = yaml.safe_load(f) train_set = DeepfakeAbstractBaseDataset( config = config, mode = 'train', ) train_data_loader = \ torch.utils.data.DataLoader( dataset=train_set, batch_size=config['train_batchSize'], shuffle=True, num_workers=0, collate_fn=train_set.collate_fn, ) from tqdm import tqdm for iteration, batch in enumerate(tqdm(train_data_loader)): # print(iteration) ... # if iteration > 10: # break