import sys sys.path.append('.') import os import sys import json import math import yaml import numpy as np import cv2 import random from PIL import Image import torch from torch.autograd import Variable from torch.utils import data from torchvision import transforms as T import skimage.draw import albumentations as alb from albumentations import Compose, RandomBrightnessContrast, \ HorizontalFlip, FancyPCA, HueSaturationValue, OneOf, ToGray, \ ShiftScaleRotate, ImageCompression, PadIfNeeded, GaussNoise, GaussianBlur, RandomResizedCrop from torch.utils.data.sampler import Sampler from .abstract_dataset import DeepfakeAbstractBaseDataset private_path_prefix = '/home/zhaokangran/cvpr24/training' fake_dict = { 'real': 0, 'Deepfakes': 1, 'Face2Face': 2, 'FaceSwap': 3, 'NeuralTextures': 4, # 'Deepfakes_Face2Face': 5, # 'Deepfakes_FaceSwap': 6, # 'Deepfakes_NeuralTextures': 7, # 'Deepfakes_real': 8, # 'Face2Face_FaceSwap': 9, # 'Face2Face_NeuralTextures': 10, # 'Face2Face_real': 11, # 'FaceSwap_NeuralTextures': 12, # 'FaceSwap_real': 13, # 'NeuralTextures_real': 14, } class RandomDownScale(alb.core.transforms_interface.ImageOnlyTransform): def apply(self,img,**params): return self.randomdownscale(img) def randomdownscale(self,img): keep_ratio=True keep_input_shape=True H,W,C=img.shape ratio_list=[2,4] r=ratio_list[np.random.randint(len(ratio_list))] img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST) if keep_input_shape: img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR) return img_ds augmentation_methods = alb.Compose([ # alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=0.5), # HorizontalFlip(p=0.5), # RandomDownScale(p=0.5), # alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=0.5), alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5), GaussianBlur(blur_limit=[3, 7], p=0.5) ], p=1.) augmentation_methods2 = alb.Compose([ alb.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=0.5), HorizontalFlip(p=0.5), RandomDownScale(p=0.5), alb.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=0.5), alb.ImageCompression(quality_lower=40,quality_upper=100,p=0.5), ], additional_targets={f'image1':'image', f'image2':'image', f'image3':'image', f'image4':'image'}, p=1.) normalize = T.Normalize(mean=[0.5, 0.5, 0.5], std =[0.5, 0.5, 0.5]) transforms1 = T.Compose([ T.ToTensor(), normalize ]) #========================================== def load_rgb(file_path, size=256): assert os.path.exists(file_path), f"{file_path} is not exists" img = cv2.imread(file_path) if img is None: raise ValueError('Img is None: {}'.format(file_path)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC) return Image.fromarray(np.array(img, dtype=np.uint8)) def load_mask(file_path, size=256): mask = cv2.imread(file_path, 0) if mask is None: mask = np.zeros((size, size)) mask = cv2.resize(mask, (size, size))/255 mask = np.expand_dims(mask, axis=2) return np.float32(mask) def add_gaussian_noise(ins, mean=0, stddev=0.1): noise = ins.data.new(ins.size()).normal_(mean, stddev) return torch.clamp(ins + noise, -1, 1) # class RandomBlur(object): # """ Randomly blur an image # """ # def __init__(self, ratio,) # class RandomCompression(object): # """ Randomly compress an image # """ class CustomSampler(Sampler): def __init__(self, num_groups=2*360, n_frame_per_vid=32, videos_per_group=5, batch_size=10): self.num_groups = num_groups self.n_frame_per_vid = n_frame_per_vid self.videos_per_group = videos_per_group self.batch_size = batch_size assert self.batch_size % self.videos_per_group == 0, "Batch size should be a multiple of videos_per_group." self.groups_per_batch = self.batch_size // self.videos_per_group def __iter__(self): group_indices = list(range(self.num_groups)) random.shuffle(group_indices) # For each batch for i in range(0, len(group_indices), self.groups_per_batch): selected_groups = group_indices[i:i+self.groups_per_batch] # For each group for group in selected_groups: frame_idx = random.randint(0, self.n_frame_per_vid - 1) # Random frame index for this group's videos # Return the frame for each video in this group using the same frame_idx for video_offset in range(self.videos_per_group): yield group * self.videos_per_group * self.n_frame_per_vid + video_offset * self.n_frame_per_vid + frame_idx def __len__(self): return self.num_groups * self.videos_per_group # Total frames class LSDADataset(DeepfakeAbstractBaseDataset): on_3060 = "3060" in torch.cuda.get_device_name() transfer_dict = { 'youtube':'FF-real', 'Deepfakes':'FF-DF', 'Face2Face':'FF-F2F', 'FaceSwap':'FF-FS', 'NeuralTextures':'FF-NT' } if on_3060: data_root = r'F:\Datasets\rgb\FaceForensics++' else: data_root = r'./datasets/FaceForensics++' data_list = { 'test': r'./datasets/FaceForensics++/test.json', 'train': r'./datasets/FaceForensics++/train.json', 'eval': r'./datasets/FaceForensics++/val.json' } def __init__(self, config=None, mode='train', with_dataset=['Deepfakes', 'Face2Face', 'FaceSwap', 'NeuralTextures']): super().__init__(config, mode) self.mode = mode self.res = config['resolution'] self.fake_dict = fake_dict # transform self.normalize = T.Normalize(mean=config['mean'], std =config['std']) # data aug and transform self.transforms1 = T.Compose([ T.ToTensor(), self.normalize ]) self.img_lines = [] self.config=config with open(self.config['dataset_json_folder']+'/FaceForensics++.json', 'r') as fd: self.img_json = json.load(fd) with open(self.data_list[mode], 'r') as fd: data = json.load(fd) img_lines = [] for pair in data: r1, r2 = pair step = 1 # collect a group with 1+len(fakes) videos, each video has self.frames[mode] frames。这里就是按同一个video这种顺序来存的,所以读的时候自然只要有了offset,就能对应的取了 #此外,这里面存的压根就不是路径,而是规范化的内容。 for i in range(0, config['frame_num'][mode], step): # collect real data here(r1) img_lines.append(('{}/{}'.format('youtube', r1), i, 0, mode)) for fake_d in with_dataset: # collect fake data here(r1_r2 * 4) for i in range(0, config['frame_num'][mode], step): img_lines.append( ('{}/{}_{}'.format(fake_d, r1, r2), i, self.fake_dict[fake_d], mode)) for i in range(0, config['frame_num'][mode], step): # collect real data here(r2) img_lines.append(('{}/{}'.format('youtube', r2), i, 0, mode)) for fake_d in with_dataset: # collect fake data here(r2_r1 * 4) for i in range(0, config['frame_num'][mode], step): img_lines.append( ('{}/{}_{}'.format(fake_d, r2, r1), i, self.fake_dict[fake_d], mode)) # 2*360 (groups) * 1+len(with_dataset) (videos in each group) * self.frames[mode] (frames in each video) assert len(img_lines) == 2*len(data) * (1 + len(with_dataset)) * config['frame_num'][mode], "to match our custom sampler, the length should be 2*360*(1+len(with_dataset))*frames[mode]" self.img_lines.extend(img_lines) def get_ids_from_path(self, path): parts = path.split('/') try: if 'youtube' in path: return [int(parts[-1])] else: return list(map(int, parts[-1].split('_'))) except: raise ValueError("wrong path: {}".format(path)) def load_image(self, name, idx): instance_type, video_name = name.split('/') #其实并没有完全对应,而只是保证在同一video的目标时间区间内的一帧 all_frames = self.img_json[self.data_root.split(os.path.sep)[-1]][self.transfer_dict[instance_type]]['train']['c23'][video_name]['frames'] img_path = all_frames[idx] impath = img_path img = self.load_rgb(impath) return img def __getitem__(self, index): name, idx, label, mode = self.img_lines[index] #这个sampler的目的是不要取重复video的图。 label = int(label) # specific fake label from 1-4 #取img没什么好说的。然后在这里把规范化的img_lines转为实际路径。 try: img = self.load_image(name, idx) except Exception as e: # 下面处理不太合适,取的不是预期的video_id/fake_method,影响后面的lsda。 # random_idx = random.randint(0, len(self.img_lines)-1) # print(f'Error loading image {name} at index {idx} due to the loading error. Try another one at index {random_idx}') # return self.__getitem__(random_idx) #边界条件判断,取同video的。 if idx==0: new_index = index+1 elif idx==31: new_index = index-1 else: new_index = index + random.choice([-1,1]) # 通过随机防止死递归 print(f'Error loading image {name} at index {idx} due to the loading error. Try another one at index {new_index}') return self.__getitem__(new_index) if self.mode=='train': # do augmentation img = np.asarray(img) # convert PIL to numpy img = augmentation_methods2(image=img)['image'] img = Image.fromarray(np.array(img, dtype=np.uint8)) # covnert numpy to PIL # transform with PIL as input img = self.transforms1(img) else: raise ValueError("Not implemented yet") return (img, label) def __len__(self): return len(self.img_lines) @staticmethod def collate_fn(batch): # Unzip the batch into images and labels images, labels = zip(*batch) # images, labels = zip(batch['image'], batch['label']) # image_list = [] # for i in range(len(images)//5): # img = images[i*5:(i+1)*5] # # do augmentation # imgs_aug = augmentation_methods2(image=np.asarray(img[0]), image1=np.asarray(img[1]), image2=np.asarray(img[2]), image3=np.asarray(img[3]), image4=np.asarray(img[4])) # for k in imgs_aug: # img_aug = Image.fromarray(np.array(imgs_aug[k], dtype=np.uint8)) # covnert numpy to PIL # # transform with PIL as input # img_aug = transforms1(img_aug) # image_list.append(img_aug) # Stack the images and labels images = torch.stack(images, dim=0) # Shape: (batch_size, c, h, w) labels = torch.tensor(labels, dtype=torch.long) bs, c, h, w = images.shape # Assume videos_per_group is 5 in our case videos_per_group = 5 num_groups = bs // videos_per_group # Reshape to get the group dimension: (num_groups, videos_per_group, c, h, w) images_grouped = images.view(num_groups, videos_per_group, c, h, w) labels_grouped = labels.view(num_groups, videos_per_group) valid_indices = [] for i, group in enumerate(labels_grouped): if set(group.numpy().tolist()) == {0, 1, 2, 3, 4}: valid_indices.append(i) # elif set(group.numpy().tolist()) == {0, 1, 2, 3}: # valid_indices.append(i) # elif set(group.numpy().tolist()) == {0, 1, 2, 3, 4, 5}: # valid_indices.append(i) images_grouped = images_grouped[valid_indices] labels_grouped = labels_grouped[valid_indices] if not valid_indices: raise ValueError("No valid groups found in this batch.") # # Shuffle the video order within each group # for i in range(num_groups): # perm = torch.randperm(videos_per_group) # images_grouped[i] = images_grouped[i, perm] # labels_grouped[i] = labels_grouped[i, perm] # # Flatten back to original shape but with shuffled video order # images_shuffled = images_grouped.view(num_groups, videos_per_group, c, h, w) # labels_shuffled = labels_grouped.view(bs) return {'image': images_grouped, 'label': labels_grouped, 'mask': None, 'landmark': None} if __name__ == '__main__': with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/lsda.yaml', 'r') as f: config = yaml.safe_load(f) train_set = LSDADataset(config=config, mode='train') custom_sampler = CustomSampler(num_groups=2*360, n_frame_per_vid=config['frame_num']['train'], batch_size=config['train_batchSize'], videos_per_group=5) train_data_loader = \ torch.utils.data.DataLoader( dataset=train_set, batch_size=config['train_batchSize'], num_workers=0, sampler=custom_sampler, collate_fn=train_set.collate_fn, ) from tqdm import tqdm for iteration, batch in enumerate(tqdm(train_data_loader)): print(iteration) if iteration > 10: break