''' # author: Zhiyuan Yan # email: zhiyuanyan@link.cuhk.edu.cn # date: 2023-03-30 The code is designed for scenarios such as disentanglement-based methods where it is necessary to ensure an equal number of positive and negative samples. ''' import torch import random import numpy as np from dataset.abstract_dataset import DeepfakeAbstractBaseDataset class pairDataset(DeepfakeAbstractBaseDataset): def __init__(self, config=None, mode='train'): super().__init__(config, mode) # Get real and fake image lists # Fix the label of real images to be 0 and fake images to be 1 self.fake_imglist = [(img, label, 1) for img, label in zip(self.image_list, self.label_list) if label != 0] self.real_imglist = [(img, label, 0) for img, label in zip(self.image_list, self.label_list) if label == 0] def __getitem__(self, index, norm=True): # Get the fake and real image paths and labels fake_image_path, fake_spe_label, fake_label = self.fake_imglist[index] real_index = random.randint(0, len(self.real_imglist) - 1) # Randomly select a real image real_image_path, real_spe_label, real_label = self.real_imglist[real_index] # Get the mask and landmark paths for fake and real images fake_mask_path = fake_image_path.replace('frames', 'masks') fake_landmark_path = fake_image_path.replace('frames', 'landmarks').replace('.png', '.npy') real_mask_path = real_image_path.replace('frames', 'masks') real_landmark_path = real_image_path.replace('frames', 'landmarks').replace('.png', '.npy') # Load the fake and real images fake_image = self.load_rgb(fake_image_path) real_image = self.load_rgb(real_image_path) fake_image = np.array(fake_image) # Convert to numpy array for data augmentation real_image = np.array(real_image) # Convert to numpy array for data augmentation # Load mask and landmark (if needed) for fake and real images if self.config['with_mask']: fake_mask = self.load_mask(fake_mask_path) real_mask = self.load_mask(real_mask_path) else: fake_mask, real_mask = None, None if self.config['with_landmark']: fake_landmarks = self.load_landmark(fake_landmark_path) real_landmarks = self.load_landmark(real_landmark_path) else: fake_landmarks, real_landmarks = None, None # Do transforms for fake and real images fake_image_trans, fake_landmarks_trans, fake_mask_trans = self.data_aug(fake_image, fake_landmarks, fake_mask) real_image_trans, real_landmarks_trans, real_mask_trans = self.data_aug(real_image, real_landmarks, real_mask) if not norm: return {"fake": (fake_image_trans, fake_label), "real": (real_image_trans, real_label)} # To tensor and normalize for fake and real images fake_image_trans = self.normalize(self.to_tensor(fake_image_trans)) real_image_trans = self.normalize(self.to_tensor(real_image_trans)) # Convert landmarks and masks to tensors if they exist if self.config['with_landmark']: fake_landmarks_trans = torch.from_numpy(fake_landmarks_trans) real_landmarks_trans = torch.from_numpy(real_landmarks_trans) if self.config['with_mask']: fake_mask_trans = torch.from_numpy(fake_mask_trans) real_mask_trans = torch.from_numpy(real_mask_trans) return {"fake": (fake_image_trans, fake_label, fake_spe_label, fake_landmarks_trans, fake_mask_trans), "real": (real_image_trans, real_label, real_spe_label, real_landmarks_trans, real_mask_trans)} def __len__(self): return len(self.fake_imglist) @staticmethod def collate_fn(batch): """ Collate a batch of data points. Args: batch (list): A list of tuples containing the image tensor, the label tensor, the landmark tensor, and the mask tensor. Returns: A tuple containing the image tensor, the label tensor, the landmark tensor, and the mask tensor. """ # Separate the image, label, landmark, and mask tensors for fake and real data fake_images, fake_labels, fake_spe_labels, fake_landmarks, fake_masks = zip(*[data["fake"] for data in batch]) real_images, real_labels, real_spe_labels, real_landmarks, real_masks = zip(*[data["real"] for data in batch]) # Stack the image, label, landmark, and mask tensors for fake and real data fake_images = torch.stack(fake_images, dim=0) fake_labels = torch.LongTensor(fake_labels) fake_spe_labels = torch.LongTensor(fake_spe_labels) real_images = torch.stack(real_images, dim=0) real_labels = torch.LongTensor(real_labels) real_spe_labels = torch.LongTensor(real_spe_labels) # Special case for landmarks and masks if they are None if fake_landmarks[0] is not None: fake_landmarks = torch.stack(fake_landmarks, dim=0) else: fake_landmarks = None if real_landmarks[0] is not None: real_landmarks = torch.stack(real_landmarks, dim=0) else: real_landmarks = None if fake_masks[0] is not None: fake_masks = torch.stack(fake_masks, dim=0) else: fake_masks = None if real_masks[0] is not None: real_masks = torch.stack(real_masks, dim=0) else: real_masks = None # Combine the fake and real tensors and create a dictionary of the tensors images = torch.cat([real_images, fake_images], dim=0) labels = torch.cat([real_labels, fake_labels], dim=0) spe_labels = torch.cat([real_spe_labels, fake_spe_labels], dim=0) if fake_landmarks is not None and real_landmarks is not None: landmarks = torch.cat([real_landmarks, fake_landmarks], dim=0) else: landmarks = None if fake_masks is not None and real_masks is not None: masks = torch.cat([real_masks, fake_masks], dim=0) else: masks = None data_dict = { 'image': images, 'label': labels, 'label_spe': spe_labels, 'landmark': landmarks, 'mask': masks } return data_dict