''' # author: Zhiyuan Yan # email: zhiyuanyan@link.cuhk.edu.cn # date: 2023-0706 # description: Class for the XceptionDetector Functions in the Class are summarized as: 1. __init__: Initialization 2. build_backbone: Backbone-building 3. build_loss: Loss-function-building 4. features: Feature-extraction 5. classifier: Classification 6. get_losses: Loss-computation 7. get_train_metrics: Training-metrics-computation 8. get_test_metrics: Testing-metrics-computation 9. forward: Forward-propagation Reference: @inproceedings{rossler2019faceforensics++, title={Faceforensics++: Learning to detect manipulated facial images}, author={Rossler, Andreas and Cozzolino, Davide and Verdoliva, Luisa and Riess, Christian and Thies, Justus and Nie{\ss}ner, Matthias}, booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, pages={1--11}, year={2019} } ''' import os import datetime import logging import numpy as np from sklearn import metrics from typing import Union from collections import defaultdict import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn import DataParallel from torch.utils.tensorboard import SummaryWriter from metrics.base_metrics_class import calculate_metrics_for_train from .base_detector import AbstractDetector from detectors import DETECTOR from networks import BACKBONE from loss import LOSSFUNC logger = logging.getLogger(__name__) @DETECTOR.register_module(module_name='xception') class XceptionDetector(AbstractDetector): def __init__(self, config): super().__init__() self.config = config self.backbone = self.build_backbone(config) self.loss_func = self.build_loss(config) self.prob, self.label = [], [] self.video_names = [] self.correct, self.total = 0, 0 def build_backbone(self, config): # prepare the backbone backbone_class = BACKBONE[config['backbone_name']] model_config = config['backbone_config'] backbone = backbone_class(model_config) # if donot load the pretrained weights, fail to get good results state_dict = torch.load(config['pretrained']) for name, weights in state_dict.items(): if 'pointwise' in name: state_dict[name] = weights.unsqueeze(-1).unsqueeze(-1) state_dict = {k:v for k, v in state_dict.items() if 'fc' not in k} backbone.load_state_dict(state_dict, False) logger.info('Load pretrained model successfully!') return backbone def build_loss(self, config): # prepare the loss function loss_class = LOSSFUNC[config['loss_func']] loss_func = loss_class() return loss_func def features(self, data_dict: dict) -> torch.tensor: return self.backbone.features(data_dict['image']) #32,3,256,256 def classifier(self, features: torch.tensor) -> torch.tensor: return self.backbone.classifier(features) def get_losses(self, data_dict: dict, pred_dict: dict) -> dict: label = data_dict['label'] pred = pred_dict['cls'] loss = self.loss_func(pred, label) overall_loss = loss loss_dict = {'overall': overall_loss, 'cls': loss,} return loss_dict def get_train_metrics(self, data_dict: dict, pred_dict: dict) -> dict: label = data_dict['label'] pred = pred_dict['cls'] # compute metrics for batch data auc, eer, acc, ap = calculate_metrics_for_train(label.detach(), pred.detach()) metric_batch_dict = {'acc': acc, 'auc': auc, 'eer': eer, 'ap': ap} # we dont compute the video-level metrics for training self.video_names = [] return metric_batch_dict def forward(self, data_dict: dict, inference=False) -> dict: # get the features by backbone features = self.features(data_dict) # get the prediction by classifier pred = self.classifier(features) # get the probability of the pred prob = torch.softmax(pred, dim=1)[:, 1] # build the prediction dict for each output pred_dict = {'cls': pred, 'prob': prob, 'feat': features} return pred_dict