|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from diffusers import FluxPipeline |
|
import torch |
|
from io import BytesIO |
|
from fastapi.responses import StreamingResponse |
|
|
|
app = FastAPI() |
|
|
|
class Prompt(BaseModel): |
|
text: str |
|
|
|
|
|
model_id = "black-forest-labs/FLUX.1-schnell" |
|
pipe = FluxPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
@app.post("/generate-image/") |
|
async def generate_image(prompt: Prompt): |
|
try: |
|
|
|
image = pipe( |
|
prompt.text, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256, |
|
generator=torch.Generator("cpu").manual_seed(0) |
|
).images[0] |
|
|
|
|
|
img_byte_arr = BytesIO() |
|
image.save(img_byte_arr, format='PNG') |
|
img_byte_arr.seek(0) |
|
|
|
return StreamingResponse(img_byte_arr, media_type="image/png") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|