Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from diffusers import FluxPipeline
|
4 |
+
import torch
|
5 |
+
from io import BytesIO
|
6 |
+
from fastapi.responses import StreamingResponse
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
class Prompt(BaseModel):
|
11 |
+
text: str
|
12 |
+
|
13 |
+
# Load the FLUX model
|
14 |
+
model_id = "black-forest-labs/FLUX.1-schnell"
|
15 |
+
pipe = FluxPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
16 |
+
pipe.enable_model_cpu_offload()
|
17 |
+
|
18 |
+
@app.post("/generate-image/")
|
19 |
+
async def generate_image(prompt: Prompt):
|
20 |
+
try:
|
21 |
+
# Generate the image
|
22 |
+
image = pipe(
|
23 |
+
prompt.text,
|
24 |
+
guidance_scale=0.0,
|
25 |
+
num_inference_steps=4,
|
26 |
+
max_sequence_length=256,
|
27 |
+
generator=torch.Generator("cpu").manual_seed(0)
|
28 |
+
).images[0]
|
29 |
+
|
30 |
+
# Save image to a BytesIO object
|
31 |
+
img_byte_arr = BytesIO()
|
32 |
+
image.save(img_byte_arr, format='PNG')
|
33 |
+
img_byte_arr.seek(0)
|
34 |
+
|
35 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
36 |
+
except Exception as e:
|
37 |
+
raise HTTPException(status_code=500, detail=str(e))
|