Create app/main.py
Browse files- app/main.py +34 -0
app/main.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from gradio_client import Client
|
4 |
+
|
5 |
+
app = FastAPI()
|
6 |
+
client = Client("Efficient-Large-Model/SanaSprint")
|
7 |
+
|
8 |
+
class GenerationRequest(BaseModel):
|
9 |
+
prompt: str
|
10 |
+
model_size: str = "1.6B"
|
11 |
+
seed: int = 0
|
12 |
+
randomize_seed: bool = True
|
13 |
+
width: int = 1024
|
14 |
+
height: int = 1024
|
15 |
+
guidance_scale: float = 4.5
|
16 |
+
num_inference_steps: int = 2
|
17 |
+
|
18 |
+
@app.post("/generate")
|
19 |
+
async def generate_image(request: GenerationRequest):
|
20 |
+
try:
|
21 |
+
result = client.predict(
|
22 |
+
prompt=request.prompt,
|
23 |
+
model_size=request.model_size,
|
24 |
+
seed=request.seed,
|
25 |
+
randomize_seed=request.randomize_seed,
|
26 |
+
width=request.width,
|
27 |
+
height=request.height,
|
28 |
+
guidance_scale=request.guidance_scale,
|
29 |
+
num_inference_steps=request.num_inference_steps,
|
30 |
+
api_name="/infer"
|
31 |
+
)
|
32 |
+
return {"result": result}
|
33 |
+
except Exception as e:
|
34 |
+
raise HTTPException(status_code=500, detail=str(e))
|