Update app/main.py
Browse files- app/main.py +21 -43
app/main.py
CHANGED
@@ -1,60 +1,30 @@
|
|
1 |
from fastapi import FastAPI, HTTPException, Query
|
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from pydantic import BaseModel
|
4 |
from gradio_client import Client
|
|
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
#
|
9 |
app.add_middleware(
|
10 |
CORSMiddleware,
|
11 |
-
allow_origins=["*"],
|
12 |
allow_credentials=True,
|
13 |
allow_methods=["*"],
|
14 |
allow_headers=["*"],
|
15 |
)
|
16 |
|
17 |
-
# Initialize
|
18 |
client = Client("K00B404/flux_666")
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
basemodel: str = "black-forest-labs/FLUX.1-schnell"
|
24 |
-
width: int = 1280
|
25 |
-
height: int = 768
|
26 |
-
scales: int = 8
|
27 |
-
steps: int = 8
|
28 |
-
seed: int = -1
|
29 |
-
upscale_factor: str = "2"
|
30 |
-
process_upscale: bool = False
|
31 |
-
lora_model: str = "XLabs-AI/flux-RealismLora"
|
32 |
-
process_lora: bool = False
|
33 |
-
|
34 |
-
@app.post("/generate")
|
35 |
-
async def generate_image(request: GenerationRequest):
|
36 |
-
try:
|
37 |
-
result = client.predict(
|
38 |
-
prompt=request.prompt,
|
39 |
-
basemodel=request.basemodel,
|
40 |
-
width=request.width,
|
41 |
-
height=request.height,
|
42 |
-
scales=request.scales,
|
43 |
-
steps=request.steps,
|
44 |
-
seed=request.seed,
|
45 |
-
upscale_factor=request.upscale_factor,
|
46 |
-
process_upscale=request.process_upscale,
|
47 |
-
lora_model=request.lora_model,
|
48 |
-
process_lora=request.process_lora,
|
49 |
-
api_name="/gen"
|
50 |
-
)
|
51 |
-
return {"result": result}
|
52 |
-
except Exception as e:
|
53 |
-
raise HTTPException(status_code=500, detail=str(e))
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
async def generate_image_get(
|
58 |
prompt: str = Query(..., description="Prompt for image generation"),
|
59 |
basemodel: str = "black-forest-labs/FLUX.1-schnell",
|
60 |
width: int = 1280,
|
@@ -68,7 +38,8 @@ async def generate_image_get(
|
|
68 |
process_lora: bool = False
|
69 |
):
|
70 |
try:
|
71 |
-
|
|
|
72 |
prompt=prompt,
|
73 |
basemodel=basemodel,
|
74 |
width=width,
|
@@ -82,6 +53,13 @@ async def generate_image_get(
|
|
82 |
process_lora=process_lora,
|
83 |
api_name="/gen"
|
84 |
)
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
from fastapi import FastAPI, HTTPException, Query
|
2 |
+
from fastapi.responses import StreamingResponse
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
4 |
from gradio_client import Client
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Allow CORS for all origins (you can restrict this in production)
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
allow_credentials=True,
|
15 |
allow_methods=["*"],
|
16 |
allow_headers=["*"],
|
17 |
)
|
18 |
|
19 |
+
# Initialize Gradio client
|
20 |
client = Client("K00B404/flux_666")
|
21 |
|
22 |
+
@app.get("/")
|
23 |
+
def root():
|
24 |
+
return {"message": "Welcome to the Flux 666 Image Generator API!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
@app.get("/generate_image")
|
27 |
+
def generate_image(
|
|
|
28 |
prompt: str = Query(..., description="Prompt for image generation"),
|
29 |
basemodel: str = "black-forest-labs/FLUX.1-schnell",
|
30 |
width: int = 1280,
|
|
|
38 |
process_lora: bool = False
|
39 |
):
|
40 |
try:
|
41 |
+
# Call the Gradio prediction API
|
42 |
+
image_url = client.predict(
|
43 |
prompt=prompt,
|
44 |
basemodel=basemodel,
|
45 |
width=width,
|
|
|
53 |
process_lora=process_lora,
|
54 |
api_name="/gen"
|
55 |
)
|
56 |
+
|
57 |
+
# Download the image
|
58 |
+
response = requests.get(image_url)
|
59 |
+
response.raise_for_status()
|
60 |
+
|
61 |
+
# Return the image stream to the browser
|
62 |
+
return StreamingResponse(io.BytesIO(response.content), media_type="image/png")
|
63 |
+
|
64 |
except Exception as e:
|
65 |
raise HTTPException(status_code=500, detail=str(e))
|