Arnesh27 commited on
Commit
9f8b574
·
verified ·
1 Parent(s): 87f72af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -11
app.py CHANGED
@@ -1,18 +1,18 @@
 
1
  import gradio as gr
2
  import torch
3
- from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
- # Load a smaller model or in half-precision
6
- model = AutoModelForCausalLM.from_pretrained("distilgpt2", torch_dtype=torch.float16)
7
- tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
 
8
 
9
- def generate_text(inputs):
10
- responses = []
11
- for input_text in inputs:
12
- input_tensor = tokenizer(input_text, return_tensors="pt", clean_up_tokenization_spaces=True)
13
- output = model.generate(**input_tensor)
14
- responses.append(tokenizer.decode(output[0], skip_special_tokens=True))
15
- return responses
16
 
17
  iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", allow_flagging="never")
18
  iface.launch(server_name="0.0.0.0", server_port=7860)
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
  import gradio as gr
3
  import torch
 
4
 
5
+ # Load the model
6
+ model_name = "HuggingFaceH4/starchat2-15b-v0.1" # Your main model
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
9
 
10
+ def generate_text(input_text):
11
+ # Ensure input is in the correct format
12
+ input_tensor = tokenizer(input_text, return_tensors="pt", clean_up_tokenization_spaces=True)
13
+ output = model.generate(**input_tensor)
14
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
15
+ return response
 
16
 
17
  iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", allow_flagging="never")
18
  iface.launch(server_name="0.0.0.0", server_port=7860)