Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,18 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
-
# Load model
|
5 |
-
model = AutoModelForCausalLM.from_pretrained("
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
iface
|
16 |
-
fn=generate_text,
|
17 |
-
inputs="text",
|
18 |
-
outputs="text",
|
19 |
-
title="Project Build",
|
20 |
-
description="Generate text using the StarChat model."
|
21 |
-
)
|
22 |
-
|
23 |
-
# Launch the app
|
24 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
+
# Load a smaller model or in half-precision
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2", torch_dtype=torch.float16)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
8 |
|
9 |
+
def generate_text(inputs):
|
10 |
+
responses = []
|
11 |
+
for input_text in inputs:
|
12 |
+
input_tensor = tokenizer(input_text, return_tensors="pt")
|
13 |
+
output = model.generate(**input_tensor)
|
14 |
+
responses.append(tokenizer.decode(output[0], skip_special_tokens=True))
|
15 |
+
return responses
|
16 |
|
17 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", allow_flagging="never")
|
18 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|