Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,31 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
|
5 |
-
# Load a
|
6 |
-
model_name = "
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
return response
|
18 |
|
19 |
-
iface = gr.Interface(fn=
|
20 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
|
5 |
+
# Load a model suited for code generation
|
6 |
+
model_name = "Salesforce/codegen-350M-mono" # This is a smaller model, choose one suited for your task
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Set the device
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
def generate_code(prompt):
|
15 |
+
# Prepare the input for the model
|
16 |
+
input_tensor = tokenizer(prompt, return_tensors="pt").to(device)
|
17 |
+
|
18 |
+
# Generate code based on the prompt
|
19 |
+
with torch.no_grad():
|
20 |
+
generated_ids = model.generate(
|
21 |
+
input_tensor['input_ids'],
|
22 |
+
max_length=300, # You can adjust this length
|
23 |
+
num_beams=5, # This controls the diversity of outputs
|
24 |
+
early_stopping=True
|
25 |
+
)
|
26 |
|
27 |
+
# Decode and return the generated code
|
28 |
+
generated_code = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
29 |
+
return generated_code
|
|
|
30 |
|
31 |
+
iface = gr.Interface(fn=generate_code, inputs="text", outputs="text", allow_flagging="never")
|
32 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|