|
import streamlit as st |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain_community.vectorstores.faiss import FAISS |
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI |
|
from dotenv import load_dotenv |
|
import PyPDF2 |
|
import os |
|
import io |
|
|
|
|
|
st.set_page_config(layout="centered") |
|
st.markdown("<h1 style='font-size:24px;'>PDF ChatBot by Ali & Arooj</h1>", unsafe_allow_html=True) |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
google_api_key = os.getenv("GOOGLE_API_KEY") |
|
|
|
|
|
if google_api_key is None: |
|
st.warning("API key not found. Please set the google_api_key environment variable.") |
|
st.stop() |
|
|
|
|
|
uploaded_file = st.file_uploader("Your PDF file here", type=["pdf"]) |
|
|
|
prompt_template = """ |
|
Answer the question as detailed as possible from the provided context, |
|
make sure to provide all the details, if the answer is not in |
|
provided context just say, "answer is not available in the context", |
|
don't provide the wrong answer\n\n |
|
Context:\n {context}?\n |
|
Question: \n{question}\n |
|
Answer: |
|
""" |
|
|
|
|
|
prompt_template = prompt_template + """ |
|
-------------------------------------------------- |
|
Prompt Suggestions: |
|
1. Summarize the primary theme of the context. |
|
2. Elaborate on the crucial concepts highlighted in the context. |
|
3. Pinpoint any supporting details or examples pertinent to the question. |
|
4. Examine any recurring themes or patterns relevant to the question within the context. |
|
5. Contrast differing viewpoints or elements mentioned in the context. |
|
6. Explore the potential implications or outcomes of the information provided. |
|
7. Assess the trustworthiness and validity of the information given. |
|
8. Propose recommendations or advice based on the presented information. |
|
9. Forecast likely future events or results stemming from the context. |
|
10. Expand on the context or background information pertinent to the question. |
|
11. Define any specialized terms or technical language used within the context. |
|
12. Analyze any visual representations like charts or graphs in the context. |
|
13. Highlight any restrictions or important considerations when responding to the question. |
|
14. Examine any presuppositions or biases evident within the context. |
|
15. Present alternate interpretations or viewpoints regarding the information provided. |
|
16. Reflect on any moral or ethical issues raised by the context. |
|
17. Investigate any cause-and-effect relationships identified in the context. |
|
18. Uncover any questions or areas requiring further exploration. |
|
19. Resolve any vague or conflicting information in the context. |
|
20. Cite case studies or examples that demonstrate the concepts discussed in the context. |
|
""" |
|
|
|
|
|
prompt_template = prompt_template + """ |
|
-------------------------------------------------- |
|
Context:\n{context}\n |
|
Question:\n{question}\n |
|
Answer: |
|
""" |
|
|
|
if uploaded_file is not None: |
|
st.text("File Uploaded Successfully!") |
|
|
|
|
|
pdf_data = uploaded_file.read() |
|
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_data)) |
|
pdf_pages = pdf_reader.pages |
|
|
|
context = "\n\n".join(page.extract_text() for page in pdf_pages) |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=200) |
|
texts = text_splitter.split_text(context) |
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") |
|
|
|
vector_index = FAISS.from_texts(texts, embeddings).as_retriever() |
|
|
|
user_question = st.text_input("Ask Anything from PDF:", "") |
|
|
|
|
|
|
|
if st.button("Get Answer"): |
|
if user_question: |
|
with st.spinner("Processing..."): |
|
|
|
docs = vector_index.get_relevant_documents(user_question) |
|
prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question']) |
|
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, api_key=google_api_key) |
|
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) |
|
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) |
|
st.subheader("Answer:") |
|
st.write(response['output_text']) |
|
|
|
else: |
|
st.warning("Please Ask.") |