Spaces:
Running
Running
# -*- coding:UTF-8 -*- | |
#!/usr/bin/env python | |
import numpy as np | |
import gradio as gr | |
import roop.globals | |
from roop.core import ( | |
start, | |
decode_execution_providers, | |
suggest_max_memory, | |
suggest_execution_threads, | |
) | |
from roop.processors.frame.core import get_frame_processors_modules | |
from roop.utilities import normalize_output_path | |
import os | |
from PIL import Image | |
from datetime import datetime | |
from huggingface_hub import HfApi, login | |
from datasets import load_dataset, Dataset | |
import json | |
import shutil | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
class FaceIntegrDataset: | |
def __init__(self, repo_id="Arrcttacsrks/face_integrData"): | |
# Get token from environment variable | |
self.token = os.getenv('hf_token') | |
if not self.token: | |
raise ValueError("HF_TOKEN environment variable is not set") | |
self.repo_id = repo_id | |
self.api = HfApi() | |
# Login to Hugging Face | |
login(self.token) | |
# Create local temp directory for organizing files | |
self.temp_dir = "temp_dataset" | |
os.makedirs(self.temp_dir, exist_ok=True) | |
def create_date_folder(self): | |
"""Create folder structure based on current date""" | |
current_date = datetime.now().strftime("%Y-%m-%d") | |
folder_path = os.path.join(self.temp_dir, current_date) | |
os.makedirs(folder_path, exist_ok=True) | |
return folder_path, current_date | |
def save_metadata(self, source_path, target_path, output_path, timestamp): | |
"""Save metadata for the face swap operation""" | |
metadata = { | |
"timestamp": timestamp, | |
"source_image": source_path, | |
"target_image": target_path, | |
"output_image": output_path, | |
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
return metadata | |
def upload_to_hf(self, local_folder, date_folder): | |
"""Upload files to Hugging Face dataset""" | |
try: | |
# Upload the files | |
self.api.upload_folder( | |
folder_path=local_folder, | |
repo_id=self.repo_id, | |
repo_type="dataset", | |
path_in_repo=date_folder | |
) | |
return True | |
except Exception as e: | |
print(f"Error uploading to Hugging Face: {str(e)}") | |
return False | |
def swap_face(source_file, target_file, doFaceEnhancer): | |
folder_path = None | |
try: | |
# Initialize dataset handler | |
dataset_handler = FaceIntegrDataset() | |
# Create date-based folder | |
folder_path, date_folder = dataset_handler.create_date_folder() | |
# Lấy thời gian hiện tại | |
now = datetime.now() | |
# Phân tách thành từng thành phần | |
seconds = now.strftime("%S") # Giây | |
minutes = now.strftime("%M") # Phút | |
hours = now.strftime("%H") # Giờ | |
day = now.strftime("%d") # Ngày | |
month = now.strftime("%m") # Tháng | |
year = now.strftime("%Y") # Năm | |
# Kết hợp lại thành timestamp | |
timestamp = f"{seconds}{minutes}{hours}{day}{month}{year}" | |
# Save input images with timestamp in folder | |
source_path = os.path.join(folder_path, f"source_{timestamp}.jpg") | |
target_path = os.path.join(folder_path, f"target_{timestamp}.jpg") | |
output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg") | |
# Save the input images | |
if source_file is None or target_file is None: | |
raise ValueError("Source and target images are required") | |
source_image = Image.fromarray(source_file) | |
source_image.save(source_path) | |
target_image = Image.fromarray(target_file) | |
target_image.save(target_path) | |
print("source_path: ", source_path) | |
print("target_path: ", target_path) | |
# Set global paths | |
roop.globals.source_path = source_path | |
roop.globals.target_path = target_path | |
roop.globals.output_path = normalize_output_path( | |
roop.globals.source_path, | |
roop.globals.target_path, | |
output_path | |
) | |
# Configure face processing options | |
if doFaceEnhancer: | |
roop.globals.frame_processors = ["face_swapper", "face_enhancer"] | |
else: | |
roop.globals.frame_processors = ["face_swapper"] | |
# Set global parameters | |
roop.globals.headless = True | |
roop.globals.keep_fps = True | |
roop.globals.keep_audio = True | |
roop.globals.keep_frames = False | |
roop.globals.many_faces = False | |
roop.globals.video_encoder = "libx264" | |
roop.globals.video_quality = 18 | |
roop.globals.max_memory = suggest_max_memory() | |
roop.globals.execution_providers = decode_execution_providers(["cuda"]) | |
roop.globals.execution_threads = suggest_execution_threads() | |
print( | |
"start process", | |
roop.globals.source_path, | |
roop.globals.target_path, | |
roop.globals.output_path, | |
) | |
# Check frame processors | |
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): | |
if not frame_processor.pre_check(): | |
return None | |
# Process the face swap | |
start() | |
# Save metadata | |
metadata = dataset_handler.save_metadata( | |
f"source_{timestamp}.jpg", | |
f"target_{timestamp}.jpg", | |
f"OutputImage{timestamp}.jpg", | |
timestamp | |
) | |
# Save metadata to JSON file in the same folder | |
metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json") | |
with open(metadata_path, 'w') as f: | |
json.dump(metadata, f, indent=4) | |
# Upload to Hugging Face | |
upload_success = dataset_handler.upload_to_hf(folder_path, date_folder) | |
if upload_success: | |
print(f"Successfully uploaded files to dataset {dataset_handler.repo_id}") | |
else: | |
print("Failed to upload files to Hugging Face dataset") | |
# Read the output image before cleaning up | |
if os.path.exists(output_path): | |
output_image = Image.open(output_path) | |
output_array = np.array(output_image) | |
# Clean up temp folder after reading the image | |
shutil.rmtree(folder_path) | |
return output_array | |
else: | |
print("Output image not found") | |
if folder_path and os.path.exists(folder_path): | |
shutil.rmtree(folder_path) | |
return None | |
except Exception as e: | |
print(f"Error in face swap process: {str(e)}") | |
if folder_path and os.path.exists(folder_path): | |
shutil.rmtree(folder_path) | |
raise gr.Error(f"Face swap failed: {str(e)}") | |
def create_interface(): | |
# Create custom style | |
custom_css = """ | |
.container { | |
max-width: 1200px; | |
margin: auto; | |
padding: 20px; | |
} | |
.output-image { | |
min-height: 400px; | |
border: 1px solid #ccc; | |
border-radius: 8px; | |
padding: 10px; | |
} | |
""" | |
# Gradio interface setup | |
title = "Face - Интегратор" | |
description = r""" | |
The application will save the image history to Hugging Face dataset using the environment variable token. | |
Please upload source and target images to begin the face swap process. | |
""" | |
article = r""" | |
<div style="text-align: center; max-width: 650px; margin: 40px auto;"> | |
<p> | |
This tool performs face swapping with optional enhancement. | |
The processed images are automatically saved to the Hugging Face dataset. | |
</p> | |
</div> | |
""" | |
# Create Gradio interface with improved layout | |
with gr.Blocks(title=title, css=custom_css) as app: | |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>") | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
source_image = gr.Image( | |
label="Source Image", | |
type="numpy", | |
sources=["upload"] | |
) | |
with gr.Column(scale=1): | |
target_image = gr.Image( | |
label="Target Image", | |
type="numpy", | |
sources=["upload"] | |
) | |
with gr.Column(scale=1): | |
output_image = gr.Image( | |
label="Output Image", | |
type="numpy", | |
interactive=False, | |
elem_classes="output-image" | |
) | |
with gr.Row(): | |
enhance_checkbox = gr.Checkbox( | |
label="Применить алгоритм?", | |
info="Улучшение качества изображения", | |
value=False | |
) | |
with gr.Row(): | |
process_btn = gr.Button( | |
"Process Face Swap", | |
variant="primary", | |
size="lg" | |
) | |
# Set up the processing event | |
process_btn.click( | |
fn=swap_face, | |
inputs=[source_image, target_image, enhance_checkbox], | |
outputs=output_image, | |
api_name="swap_face" | |
) | |
gr.Markdown(article) | |
return app | |
def main(): | |
# Create and launch the interface | |
app = create_interface() | |
app.launch(share=False) | |
if __name__ == "__main__": | |
main() |