Spaces:
Running
Running
# -*- coding: UTF-8 -*- | |
#!/usr/bin/env python | |
import os | |
import json | |
import shutil | |
from datetime import datetime | |
from dotenv import load_dotenv | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import HfApi, login | |
from roop.globals import ( | |
start, | |
decode_execution_providers, | |
suggest_max_memory, | |
suggest_execution_threads, | |
) | |
from roop.core import normalize_output_path | |
from roop.processors.frame.core import get_frame_processors_modules | |
from insightface.app import FaceAnalysis | |
# Load environment variables | |
load_dotenv() | |
# Cosine similarity function | |
def cosine_similarity(a, b): | |
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6) | |
# Dataset handler class | |
class FaceIntegrDataset: | |
def __init__(self, repo_id="Arrcttacsrks/face_integrData"): | |
self.token = os.getenv("hf_token") | |
if not self.token: | |
raise ValueError("HF_TOKEN environment variable is not set") | |
self.repo_id = repo_id | |
self.api = HfApi() | |
login(self.token) | |
self.temp_dir = "temp_dataset" | |
os.makedirs(self.temp_dir, exist_ok=True) | |
def create_date_folder(self): | |
current_date = datetime.now().strftime("%Y-%m-%d") | |
folder_path = os.path.join(self.temp_dir, current_date) | |
os.makedirs(folder_path, exist_ok=True) | |
return folder_path, current_date | |
def save_metadata(self, source_path, target_path, output_path, timestamp): | |
metadata = { | |
"timestamp": timestamp, | |
"source_image": source_path, | |
"target_image": target_path, | |
"output_image": output_path, | |
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
} | |
return metadata | |
def upload_to_hf(self, local_folder, date_folder): | |
try: | |
self.api.upload_folder( | |
folder_path=local_folder, | |
repo_id=self.repo_id, | |
repo_type="dataset", | |
path_in_repo=date_folder, | |
) | |
return True | |
except Exception as e: | |
print(f"Error uploading to Hugging Face: {str(e)}") | |
return False | |
# Image face swap function | |
def swap_face(source_file, target_file, doFaceEnhancer): | |
dataset_handler = FaceIntegrDataset() | |
folder_path, date_folder = dataset_handler.create_date_folder() | |
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y") | |
try: | |
# Save source and target images | |
source_path = os.path.join(folder_path, f"source_{timestamp}.jpg") | |
target_path = os.path.join(folder_path, f"target_{timestamp}.jpg") | |
output_path = os.path.join(folder_path, f"OutputImage_{timestamp}.jpg") | |
if source_file is None or target_file is None: | |
raise ValueError("Source and target images are required") | |
Image.fromarray(source_file).save(source_path) | |
Image.fromarray(target_file).save(target_path) | |
# Configure Roop globals | |
roop.globals.source_path = source_path | |
roop.globals.target_path = target_path | |
roop.globals.output_path = normalize_output_path( | |
roop.globals.source_path, roop.globals.target_path, output_path | |
) | |
roop.globals.frame_processors = ( | |
["face_swapper", "face_enhancer"] if doFaceEnhancer else ["face_swapper"] | |
) | |
roop.globals.headless = True | |
roop.globals.keep_fps = True | |
roop.globals.keep_audio = True | |
roop.globals.keep_frames = False | |
roop.globals.many_faces = False | |
roop.globals.video_encoder = "libx264" | |
roop.globals.video_quality = 18 | |
roop.globals.max_memory = suggest_max_memory() | |
roop.globals.execution_providers = decode_execution_providers(["cuda"]) | |
roop.globals.execution_threads = suggest_execution_threads() | |
# Pre-check frame processors | |
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): | |
if not frame_processor.pre_check(): | |
raise RuntimeError("Frame processor pre-check failed") | |
# Start face swap process | |
start() | |
# Save metadata | |
metadata = dataset_handler.save_metadata( | |
f"source_{timestamp}.jpg", | |
f"target_{timestamp}.jpg", | |
f"OutputImage_{timestamp}.jpg", | |
timestamp, | |
) | |
metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json") | |
with open(metadata_path, "w") as f: | |
json.dump(metadata, f, indent=4) | |
# Upload to Hugging Face | |
upload_success = dataset_handler.upload_to_hf(folder_path, date_folder) | |
if not upload_success: | |
print("Failed to upload files to Hugging Face dataset") | |
# Return output image | |
if os.path.exists(output_path): | |
output_image = Image.open(output_path) | |
return np.array(output_image) | |
else: | |
raise FileNotFoundError("Output image not found") | |
except Exception as e: | |
print(f"Error in face swap process: {str(e)}") | |
raise gr.Error(f"Face swap failed: {str(e)}") | |
finally: | |
if folder_path and os.path.exists(folder_path): | |
shutil.rmtree(folder_path) | |
# Video face swap helper function | |
def swap_face_frame(frame_bgr, replacement_face_rgb, doFaceEnhancer): | |
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) | |
temp_dir = "temp_faceswap_frame" | |
os.makedirs(temp_dir, exist_ok=True) | |
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y") | |
try: | |
source_path = os.path.join(temp_dir, f"source_{timestamp}.jpg") | |
target_path = os.path.join(temp_dir, f"target_{timestamp}.jpg") | |
output_path = os.path.join(temp_dir, f"OutputImage_{timestamp}.jpg") | |
Image.fromarray(frame_rgb).save(source_path) | |
Image.fromarray(replacement_face_rgb).save(target_path) | |
# Configure Roop globals | |
roop.globals.source_path = source_path | |
roop.globals.target_path = target_path | |
roop.globals.output_path = normalize_output_path( | |
source_path, target_path, output_path | |
) | |
roop.globals.frame_processors = ( | |
["face_swapper", "face_enhancer"] if doFaceEnhancer else ["face_swapper"] | |
) | |
roop.globals.headless = True | |
roop.globals.keep_fps = True | |
roop.globals.keep_audio = True | |
roop.globals.keep_frames = False | |
roop.globals.many_faces = False | |
roop.globals.video_encoder = "libx264" | |
roop.globals.video_quality = 18 | |
roop.globals.max_memory = suggest_max_memory() | |
roop.globals.execution_providers = decode_execution_providers(["cuda"]) | |
roop.globals.execution_threads = suggest_execution_threads() | |
start() | |
# Return swapped frame | |
if os.path.exists(output_path): | |
return np.array(Image.open(output_path)) | |
else: | |
return frame_rgb | |
finally: | |
shutil.rmtree(temp_dir) | |
# Video face swap function | |
def swap_face_video(reference_face, replacement_face, video_input, similarity_threshold, doFaceEnhancer): | |
fa = FaceAnalysis() | |
fa.prepare(ctx_id=0) | |
ref_detections = fa.get(reference_face) | |
if not ref_detections: | |
raise gr.Error("No face detected in the reference image!") | |
ref_embedding = ref_detections[0].embedding | |
cap = cv2.VideoCapture(video_input) | |
if not cap.isOpened(): | |
raise gr.Error("Failed to open input video!") | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
output_video_path = "temp_faceswap_video.mp4" | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) | |
frame_index = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
detections = fa.get(frame_rgb) | |
swap_this_frame = any( | |
cosine_similarity(det.embedding, ref_embedding) >= similarity_threshold | |
for det in detections | |
) | |
if swap_this_frame: | |
swapped_frame_rgb = swap_face_frame(frame, replacement_face, doFaceEnhancer) | |
swapped_frame = cv2.cvtColor(swapped_frame_rgb, cv2.COLOR_RGB2BGR) | |
else: | |
swapped_frame = frame | |
out.write(swapped_frame) | |
frame_index += 1 | |
print(f"Processed frame {frame_index}") | |
cap.release() | |
out.release() | |
return output_video_path | |
# Gradio interface | |
def create_interface(): | |
custom_css = """ | |
.container { | |
max-width: 1200px; | |
margin: auto; | |
padding: 20px; | |
} | |
.output-image { | |
min-height: 400px; | |
border: 1px solid #ccc; | |
border-radius: 8px; | |
padding: 10px; | |
} | |
""" | |
title = "Face - Integrator" | |
description = "Upload source and target images to perform face swap." | |
article = """ | |
<div style="text-align: center; max-width: 650px; margin: 40px auto;"> | |
<p>This tool performs face swapping with optional enhancement.</p> | |
</div> | |
""" | |
with gr.Blocks(title=title, css=custom_css) as app: | |
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>") | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.TabItem("FaceSwap Image"): | |
with gr.Row(): | |
source_image = gr.Image(label="Source Image", type="numpy", sources=["upload"]) | |
target_image = gr.Image(label="Target Image", type="numpy", sources=["upload"]) | |
output_image = gr.Image(label="Output Image", type="numpy", interactive=False, elem_classes="output-image") | |
enhance_checkbox = gr.Checkbox(label="Apply Enhancement?", info="Improve image quality", value=False) | |
process_btn = gr.Button("Process Face Swap", variant="primary", size="lg") | |
process_btn.click( | |
fn=swap_face, | |
inputs=[source_image, target_image, enhance_checkbox], | |
outputs=output_image, | |
api_name="swap_face", | |
) | |
with gr.TabItem("FaceSwap Video"): | |
gr.Markdown("<h2 style='text-align:center;'>FaceSwap Video</h2>") | |
with gr.Row(): | |
ref_image = gr.Image(label="Reference Face", type="numpy", sources=["upload"]) | |
swap_image = gr.Image(label="Replacement Face", type="numpy", sources=["upload"]) | |
video_input = gr.Video(label="Input Video") | |
similarity_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.7, label="Similarity Threshold") | |
enhance_checkbox_video = gr.Checkbox(label="Apply Enhancement?", info="Improve image quality", value=False) | |
video_output = gr.Video(label="Output Video") | |
process_video_btn = gr.Button("Process FaceSwap Video", variant="primary", size="lg") | |
process_video_btn.click( | |
fn=swap_face_video, | |
inputs=[ref_image, swap_image, video_input, similarity_threshold, enhance_checkbox_video], | |
outputs=video_output, | |
api_name="swap_face_video", | |
) | |
gr.Markdown(article) | |
return app | |
# Main function | |
def main(): | |
app = create_interface() | |
app.launch(share=False) | |
if __name__ == "__main__": | |
main() |