Face_Swap / app.py
Arrcttacsrks's picture
Update app.py
be56d2f verified
raw
history blame
17.1 kB
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import os
import json
import shutil
import logging
import tempfile
from datetime import datetime
from typing import Tuple, Optional
import numpy as np
import cv2
from PIL import Image
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import HfApi, login
from insightface.app import FaceAnalysis
import roop.globals
from roop.core import (
start,
decode_execution_providers,
suggest_max_memory,
suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Load environment variables
load_dotenv()
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
"""
Calculate the cosine similarity between two vectors.
Parameters:
a (np.ndarray): First vector.
b (np.ndarray): Second vector.
Returns:
float: Cosine similarity.
"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6)
class FaceIntegrDataset:
"""
Handler for face integration dataset upload to Hugging Face.
"""
def __init__(self, repo_id: str = "Arrcttacsrks/face_integrData") -> None:
self.token = os.getenv('hf_token')
if not self.token:
raise ValueError("HF_TOKEN environment variable is not set")
self.repo_id = repo_id
self.api = HfApi()
login(self.token)
self.temp_dir = "temp_dataset"
os.makedirs(self.temp_dir, exist_ok=True)
def create_date_folder(self) -> Tuple[str, str]:
"""
Create a folder based on the current date inside the temporary directory.
Returns:
Tuple[str, str]: The folder path and the current date string.
"""
current_date = datetime.now().strftime("%Y-%m-%d")
folder_path = os.path.join(self.temp_dir, current_date)
os.makedirs(folder_path, exist_ok=True)
return folder_path, current_date
def save_metadata(self, source_path: str, target_path: str, output_path: str, timestamp: str) -> dict:
"""
Create metadata dictionary for the face swap process.
Parameters:
source_path (str): Filename of the source image.
target_path (str): Filename of the target image.
output_path (str): Filename of the output image.
timestamp (str): Timestamp string.
Returns:
dict: Metadata information.
"""
metadata = {
"timestamp": timestamp,
"source_image": source_path,
"target_image": target_path,
"output_image": output_path,
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
return metadata
def upload_to_hf(self, local_folder: str, date_folder: str) -> bool:
"""
Upload a local folder to the Hugging Face dataset repository.
Parameters:
local_folder (str): The local folder path.
date_folder (str): The subfolder in the repository.
Returns:
bool: True if upload is successful, False otherwise.
"""
try:
self.api.upload_folder(
folder_path=local_folder,
repo_id=self.repo_id,
repo_type="dataset",
path_in_repo=date_folder
)
logging.info("Successfully uploaded files to Hugging Face repository.")
return True
except Exception as e:
logging.error(f"Error uploading to Hugging Face: {str(e)}")
return False
def configure_roop_globals(source_path: str, target_path: str, output_path: str, do_face_enhancer: bool) -> None:
"""
Configure global variables required for the face swap process.
Parameters:
source_path (str): Path to the source image.
target_path (str): Path to the target image.
output_path (str): Path to save the output image.
do_face_enhancer (bool): Flag to determine if face enhancer should be used.
"""
roop.globals.source_path = source_path
roop.globals.target_path = target_path
roop.globals.output_path = normalize_output_path(source_path, target_path, output_path)
roop.globals.frame_processors = ["face_swapper", "face_enhancer"] if do_face_enhancer else ["face_swapper"]
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.max_memory = suggest_max_memory()
roop.globals.execution_providers = decode_execution_providers(["cuda"])
roop.globals.execution_threads = suggest_execution_threads()
def swap_face(source_file: np.ndarray, target_file: np.ndarray, doFaceEnhancer: bool) -> Optional[np.ndarray]:
"""
Perform face swapping on static images.
Parameters:
source_file (np.ndarray): Source image array.
target_file (np.ndarray): Target image array.
doFaceEnhancer (bool): Flag to apply face enhancer.
Returns:
Optional[np.ndarray]: The output image array if successful, otherwise None.
"""
folder_path = None
try:
dataset_handler = FaceIntegrDataset()
folder_path, date_folder = dataset_handler.create_date_folder()
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
source_path = os.path.join(folder_path, f"source_{timestamp}.jpg")
target_path = os.path.join(folder_path, f"target_{timestamp}.jpg")
output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg")
if source_file is None or target_file is None:
raise ValueError("Source and target images are required")
Image.fromarray(source_file).save(source_path)
Image.fromarray(target_file).save(target_path)
logging.info(f"Source image saved at: {source_path}")
logging.info(f"Target image saved at: {target_path}")
# Configure global parameters for roop
configure_roop_globals(source_path, target_path, output_path, doFaceEnhancer)
# Pre-check frame processors
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_check():
logging.error("Pre-check failed for frame processor.")
return None
logging.info("Starting face swap process...")
start()
metadata = dataset_handler.save_metadata(
os.path.basename(source_path),
os.path.basename(target_path),
os.path.basename(output_path),
timestamp
)
metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=4)
upload_success = dataset_handler.upload_to_hf(folder_path, date_folder)
if upload_success:
logging.info(f"Successfully uploaded files to dataset {dataset_handler.repo_id}")
else:
logging.error("Failed to upload files to Hugging Face dataset")
if os.path.exists(roop.globals.output_path):
output_image = Image.open(roop.globals.output_path)
output_array = np.array(output_image)
shutil.rmtree(folder_path, ignore_errors=True)
return output_array
else:
logging.error("Output image not found")
shutil.rmtree(folder_path, ignore_errors=True)
return None
except Exception as e:
logging.exception(f"Error in face swap process: {str(e)}")
if folder_path and os.path.exists(folder_path):
shutil.rmtree(folder_path, ignore_errors=True)
raise gr.Error(f"Face swap failed: {str(e)}")
def swap_face_frame(frame_bgr: np.ndarray, replacement_face_rgb: np.ndarray, doFaceEnhancer: bool) -> np.ndarray:
"""
Swap face in a single video frame.
Parameters:
frame_bgr (np.ndarray): Video frame in BGR format.
replacement_face_rgb (np.ndarray): Replacement face image in RGB format.
doFaceEnhancer (bool): Flag to apply face enhancer.
Returns:
np.ndarray: Processed frame with face swapped (in RGB format).
"""
# Convert BGR to RGB for processing
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
temp_dir = tempfile.mkdtemp(prefix="temp_faceswap_frame_")
timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y")
source_path = os.path.join(temp_dir, f"source_{timestamp}.jpg")
target_path = os.path.join(temp_dir, f"target_{timestamp}.jpg")
output_path = os.path.join(temp_dir, f"OutputImage_{timestamp}.jpg")
try:
Image.fromarray(frame_rgb).save(source_path)
Image.fromarray(replacement_face_rgb).save(target_path)
configure_roop_globals(source_path, target_path, output_path, doFaceEnhancer)
start()
if os.path.exists(roop.globals.output_path):
swapped_img = np.array(Image.open(roop.globals.output_path))
else:
logging.warning("Output image not found after face swap; returning original frame.")
swapped_img = frame_rgb
except Exception as e:
logging.exception(f"Error in processing frame for face swap: {str(e)}")
swapped_img = frame_rgb
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return swapped_img
def swap_face_video(reference_face: np.ndarray, replacement_face: np.ndarray, video_input: str,
similarity_threshold: float, doFaceEnhancer: bool) -> str:
"""
Perform face swapping on a video frame-by-frame.
Parameters:
reference_face (np.ndarray): Reference face image (RGB) for face locking.
replacement_face (np.ndarray): Replacement face image (RGB).
video_input (str): Path to the input video file.
similarity_threshold (float): Threshold for face similarity (0.0 - 1.0).
doFaceEnhancer (bool): Flag to apply face enhancer.
Returns:
str: Path to the output video file.
Raises:
gr.Error: If face detection fails or video cannot be processed.
"""
try:
# Initialize insightface face analysis
fa = FaceAnalysis()
fa.prepare(ctx_id=0)
# Get embedding for the reference face
ref_detections = fa.get(reference_face)
if not ref_detections:
raise gr.Error("No face detected in the reference image!")
ref_embedding = ref_detections[0].embedding
# Open video input
cap = cv2.VideoCapture(video_input)
if not cap.isOpened():
raise gr.Error("Cannot open the input video!")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = "temp_faceswap_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
frame_index = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
detections = fa.get(frame_rgb)
swap_this_frame = any(
cosine_similarity(det.embedding, ref_embedding) >= similarity_threshold
for det in detections
)
if swap_this_frame:
swapped_frame_rgb = swap_face_frame(frame, replacement_face, doFaceEnhancer)
swapped_frame = cv2.cvtColor(swapped_frame_rgb, cv2.COLOR_RGB2BGR)
else:
swapped_frame = frame
out.write(swapped_frame)
frame_index += 1
logging.info(f"Processed frame {frame_index}")
cap.release()
out.release()
return output_video_path
except Exception as e:
logging.exception(f"Error processing video: {str(e)}")
raise gr.Error(f"Face swap video failed: {str(e)}")
def create_interface() -> gr.Blocks:
"""
Create and return the Gradio interface for face swapping.
Returns:
gr.Blocks: The Gradio interface.
"""
custom_css = """
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.output-image {
min-height: 400px;
border: 1px solid #ccc;
border-radius: 8px;
padding: 10px;
}
"""
title = "Face - Integrator"
description = "Upload source and target images to perform face swap."
article = """
<div style="text-align: center; max-width: 650px; margin: 40px auto;">
<p>This tool performs face swapping with optional enhancement.</p>
</div>
"""
with gr.Blocks(title=title, css=custom_css) as app:
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("FaceSwap Image"):
with gr.Row():
with gr.Column(scale=1):
source_image = gr.Image(
label="Source Image",
type="numpy",
sources=["upload"]
)
with gr.Column(scale=1):
target_image = gr.Image(
label="Target Image",
type="numpy",
sources=["upload"]
)
with gr.Column(scale=1):
output_image = gr.Image(
label="Output Image",
type="numpy",
interactive=False,
elem_classes="output-image"
)
with gr.Row():
enhance_checkbox = gr.Checkbox(
label="Apply Face Enhancer",
info="Improve image quality",
value=False
)
with gr.Row():
process_btn = gr.Button(
"Process Face Swap",
variant="primary",
size="lg"
)
process_btn.click(
fn=swap_face,
inputs=[source_image, target_image, enhance_checkbox],
outputs=output_image,
api_name="swap_face"
)
with gr.TabItem("FaceSwap Video"):
gr.Markdown("<h2 style='text-align:center;'>FaceSwap Video</h2>")
with gr.Row():
ref_image = gr.Image(
label="Reference Face Image (Lock Face)",
type="numpy",
sources=["upload"]
)
swap_image = gr.Image(
label="Replacement Face Image",
type="numpy",
sources=["upload"]
)
video_input = gr.Video(
label="Input Video"
)
similarity_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7,
label="Similarity Threshold"
)
enhance_checkbox_video = gr.Checkbox(
label="Apply Face Enhancer",
info="Optional quality enhancement",
value=False
)
process_video_btn = gr.Button(
"Process FaceSwap Video",
variant="primary",
size="lg"
)
video_output = gr.Video(
label="Output Video"
)
process_video_btn.click(
fn=swap_face_video,
inputs=[ref_image, swap_image, video_input, similarity_threshold, enhance_checkbox_video],
outputs=video_output,
api_name="swap_face_video"
)
gr.Markdown(article)
return app
def main() -> None:
"""
Launch the Gradio interface.
"""
app = create_interface()
app.launch(share=False)
if __name__ == "__main__":
main()