Face_Swap / face-swap-timestamp.py
Arrcttacsrks's picture
Upload face-swap-timestamp.py
b6da6b0 verified
raw
history blame
2.74 kB
# -*- coding:UTF-8 -*-
#!/usr/bin/env python
import numpy as np
import gradio as gr
import roop.globals
from roop.core import (
start,
decode_execution_providers,
suggest_max_memory,
suggest_execution_threads,
)
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import normalize_output_path
import os
from PIL import Image
from datetime import datetime
def swap_face(source_file, target_file, doFaceEnhancer):
# Save input images
source_path = "input.jpg"
target_path = "target.jpg"
source_image = Image.fromarray(source_file)
source_image.save(source_path)
target_image = Image.fromarray(target_file)
target_image.save(target_path)
print("source_path: ", source_path)
print("target_path: ", target_path)
# Set global paths
roop.globals.source_path = source_path
roop.globals.target_path = target_path
# Generate timestamp-based output filename
timestamp = datetime.now().strftime("%S%M%H%d%m%Y")
output_path = f"Image{timestamp}.jpg"
roop.globals.output_path = normalize_output_path(
roop.globals.source_path, roop.globals.target_path, output_path
)
# Configure face processing options
if doFaceEnhancer:
roop.globals.frame_processors = ["face_swapper", "face_enhancer"]
else:
roop.globals.frame_processors = ["face_swapper"]
# Set global parameters
roop.globals.headless = True
roop.globals.keep_fps = True
roop.globals.keep_audio = True
roop.globals.keep_frames = False
roop.globals.many_faces = False
roop.globals.video_encoder = "libx264"
roop.globals.video_quality = 18
roop.globals.max_memory = suggest_max_memory()
roop.globals.execution_providers = decode_execution_providers(["cuda"])
roop.globals.execution_threads = suggest_execution_threads()
print(
"start process",
roop.globals.source_path,
roop.globals.target_path,
roop.globals.output_path,
)
# Check frame processors
for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
if not frame_processor.pre_check():
return
start()
return output_path
# Gradio interface setup
title = "Face - Интегратор"
description = r"""
"""
article = r"""
<br><br><br><br><br>
"""
app = gr.Interface(
fn=swap_face,
title=title,
description=description,
article=article,
inputs=[
gr.Image(),
gr.Image(),
gr.Checkbox(label="Применить алгоритм?", info="Улучшение качества изображения")
],
outputs="image"
)
app.launch()