import streamlit as st import PyPDF2 from transformers import pipeline from gtts import gTTS # Function to read the PDF and extract text def extract_text_from_pdf(pdf_file): pdf_reader = PyPDF2.PdfReader(pdf_file) text = "" for page_num in range(len(pdf_reader.pages)): text += pdf_reader.pages[page_num].extract_text() return text # Function to generate discussion points def generate_discussion_points(text): summarizer = pipeline('summarization') summary = summarizer(text, max_length=600, min_length=300, do_sample=False) return summary[0]['summary_text'] # Function to convert text to speech def text_to_speech(text): tts = gTTS(text=text, lang='en') tts.save("discussion_points.mp3") # Streamlit app st.title("PDF Discussion Points Generator") uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) if uploaded_file is not None: text = extract_text_from_pdf(uploaded_file) discussion_points = generate_discussion_points(text) st.subheader("Generated Discussion Points") st.write(discussion_points) text_to_speech(discussion_points) audio_file = open("discussion_points.mp3", "rb") audio_bytes = audio_file.read() st.audio(audio_bytes, format='audio/mp3')