File size: 14,045 Bytes
f89c8ce
4b6f416
f89c8ce
04676e1
f89c8ce
 
 
8eab835
4b6f416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89c8ce
 
4b6f416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip, TextClip, CompositeVideoClip
import whisper
from translate import Translator
from gtts import gTTS
import tempfile
import os
import numpy as np
from pydub import AudioSegment
import speech_recognition as sr
from datetime import timedelta
import json
import indic_transliteration
from indic_transliteration import sanscript
from indic_transliteration.sanscript import SchemeMap, SCHEMES, transliterate
import azure.cognitiveservices.speech as speechsdk

# Tamil-specific voice configurations
TAMIL_VOICES = {
    'Female 1': {'gender': 'female', 'age': 'adult', 'style': 'normal'},
    'Female 2': {'gender': 'female', 'age': 'adult', 'style': 'formal'},
    'Male 1': {'gender': 'male', 'age': 'adult', 'style': 'normal'},
    'Male 2': {'gender': 'male', 'age': 'adult', 'style': 'formal'},
}

# Tamil-specific pronunciations and replacements
TAMIL_PRONUNCIATIONS = {
    'zh': 'l',  # Handle special Tamil character ழ
    'L': 'l',   # Handle special Tamil character ள
    'N': 'n',   # Handle special Tamil character ண
    'R': 'r',   # Handle special Tamil character ற
}

class TamilTextProcessor:
    @staticmethod
    def normalize_tamil_text(text):
        """Normalize Tamil text for better pronunciation"""
        # Convert Tamil numerals to English numerals
        tamil_numerals = {'௦': '0', '௧': '1', '௨': '2', '௩': '3', '௪': '4',
                         '௫': '5', '௬': '6', '௭': '7', '௮': '8', '௯': '9'}
        for tamil_num, eng_num in tamil_numerals.items():
            text = text.replace(tamil_num, eng_num)
        
        # Handle special characters and combinations
        text = text.replace('ஜ்ஞ', 'க்ய')  # Replace complex character combinations
        
        return text

    @staticmethod
    def split_tamil_sentences(text):
        """Split Tamil text into natural sentence boundaries"""
        sentence_endings = ['।', '.', '!', '?', '॥']
        sentences = []
        current_sentence = ''
        
        for char in text:
            current_sentence += char
            if char in sentence_endings:
                sentences.append(current_sentence.strip())
                current_sentence = ''
        
        if current_sentence:
            sentences.append(current_sentence.strip())
            
        return sentences

class TamilAudioProcessor:
    @staticmethod
    def adjust_tamil_audio(audio_segment):
        """Adjust audio characteristics for Tamil speech"""
        # Enhance clarity of Tamil consonants
        enhanced_audio = audio_segment.high_pass_filter(80)
        enhanced_audio = enhanced_audio.low_pass_filter(8000)
        
        # Adjust speed slightly for better comprehension
        enhanced_audio = enhanced_audio.speedup(playback_speed=0.95)
        
        return enhanced_audio

    @staticmethod
    def match_emotion(audio_segment, emotion_type):
        """Adjust audio based on emotional context"""
        if emotion_type == 'happy':
            return audio_segment.apply_gain(2).high_pass_filter(100)
        elif emotion_type == 'sad':
            return audio_segment.apply_gain(-1).low_pass_filter(3000)
        elif emotion_type == 'angry':
            return audio_segment.apply_gain(4).high_pass_filter(200)
        return audio_segment

class TamilVideoDubber:
    def __init__(self, azure_key=None, azure_region=None):
        self.whisper_model = whisper.load_model("base")
        self.temp_files = []
        self.azure_key = azure_key
        self.azure_region = azure_region

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.cleanup()

    def cleanup(self):
        for temp_file in self.temp_files:
            if os.path.exists(temp_file):
                os.remove(temp_file)

    def create_temp_file(self, suffix):
        temp_file = tempfile.mktemp(suffix=suffix)
        self.temp_files.append(temp_file)
        return temp_file

    def extract_audio_segments(self, video_path):
        """Extract audio segments with emotion detection"""
        video = VideoFileClip(video_path)
        result = self.whisper_model.transcribe(video_path)
        
        segments = []
        for segment in result["segments"]:
            # Basic emotion detection based on punctuation and keywords
            emotion = self.detect_emotion(segment["text"])
            segments.append({
                "text": segment["text"],
                "start": segment["start"],
                "end": segment["end"],
                "duration": segment["end"] - segment["start"],
                "emotion": emotion
            })
        
        return segments, video.duration

    def detect_emotion(self, text):
        """Simple emotion detection based on text analysis"""
        happy_words = ['happy', 'joy', 'laugh', 'smile', 'மகிழ்ச்சி']
        sad_words = ['sad', 'sorry', 'cry', 'வருத்தம்']
        angry_words = ['angry', 'hate', 'கோபம்']
        
        text_lower = text.lower()
        if any(word in text_lower for word in happy_words):
            return 'happy'
        elif any(word in text_lower for word in sad_words):
            return 'sad'
        elif any(word in text_lower for word in angry_words):
            return 'angry'
        return 'neutral'

    def translate_to_tamil(self, text):
        """Translate text to Tamil with context preservation"""
        translator = Translator(to_lang='ta')
        translated = translator.translate(text)
        return TamilTextProcessor.normalize_tamil_text(translated)

    def generate_tamil_audio(self, text, voice_config, emotion='neutral'):
        """Generate Tamil audio using Azure TTS or gTTS"""
        if self.azure_key and self.azure_region:
            return self._generate_azure_tamil_audio(text, voice_config, emotion)
        else:
            return self._generate_gtts_tamil_audio(text, emotion)

    def _generate_azure_tamil_audio(self, text, voice_config, emotion):
        """Generate Tamil audio using Azure Cognitive Services"""
        speech_config = speechsdk.SpeechConfig(
            subscription=self.azure_key, region=self.azure_region)
        
        # Configure Tamil voice
        speech_config.speech_synthesis_voice_name = "ta-IN-PallaviNeural"
        
        # Create speech synthesizer
        speech_synthesizer = speechsdk.SpeechSynthesizer(
            speech_config=speech_config)
        
        # Add SSML for emotion and style
        ssml_text = f"""
        <speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis">
            <voice name="ta-IN-PallaviNeural">
                <prosody rate="{self._get_emotion_rate(emotion)}" 
                         pitch="{self._get_emotion_pitch(emotion)}">
                    {text}
                </prosody>
            </voice>
        </speak>
        """
        
        result = speech_synthesizer.speak_ssml_async(ssml_text).get()
        
        if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
            return AudioSegment.from_wav(io.BytesIO(result.audio_data))
        else:
            raise Exception("Speech synthesis failed")

    def _generate_gtts_tamil_audio(self, text, emotion):
        """Fallback to gTTS for Tamil audio generation"""
        temp_path = self.create_temp_file(".mp3")
        tts = gTTS(text=text, lang='ta')
        tts.save(temp_path)
        
        audio = AudioSegment.from_mp3(temp_path)
        # Apply emotion-based adjustments
        audio = TamilAudioProcessor.match_emotion(audio, emotion)
        return audio

    @staticmethod
    def _get_emotion_rate(emotion):
        """Get speech rate based on emotion"""
        rates = {
            'happy': '1.1',
            'sad': '0.9',
            'angry': '1.2',
            'neutral': '1.0'
        }
        return rates.get(emotion, '1.0')

    @staticmethod
    def _get_emotion_pitch(emotion):
        """Get pitch adjustment based on emotion"""
        pitches = {
            'happy': '+1st',
            'sad': '-1st',
            'angry': '+2st',
            'neutral': '0st'
        }
        return pitches.get(emotion, '0st')

def main():
    st.title("Tamil Movie Dubbing System")
    st.sidebar.header("Settings")

    # Video upload
    video_file = st.file_uploader("Upload your video", type=['mp4', 'mov', 'avi'])
    if not video_file:
        return

    # Voice selection
    selected_voice = st.selectbox("Select Tamil voice", list(TAMIL_VOICES.keys()))
    
    # Advanced settings
    with st.expander("Advanced Settings"):
        generate_subtitles = st.checkbox("Generate Tamil subtitles", value=True)
        adjust_audio = st.checkbox("Enhance Tamil audio clarity", value=True)
        emotion_detection = st.checkbox("Enable emotion detection", value=True)
        
        # Tamil font selection for subtitles
        tamil_fonts = ["Latha", "Vijaya", "Mukta Malar"]
        selected_font = st.selectbox("Select Tamil font", tamil_fonts)
        
        # Audio enhancement options
        if adjust_audio:
            clarity_level = st.slider("Audio clarity level", 1, 5, 3)
            bass_boost = st.slider("Bass boost", 0, 100, 50)

    if st.button("Start Tamil Dubbing"):
        with st.spinner("Processing your video..."):
            try:
                with TamilVideoDubber() as dubber:
                    # Save uploaded video
                    temp_video_path = dubber.create_temp_file(".mp4")
                    with open(temp_video_path, "wb") as f:
                        f.write(video_file.read())

                    # Process video with progress tracking
                    progress_bar = st.progress(0)
                    status_text = st.empty()
                    
                    # Extract and analyze segments
                    status_text.text("Analyzing video...")
                    segments, duration = dubber.extract_audio_segments(
                        temp_video_path)
                    progress_bar.progress(0.25)

                    # Translation and audio generation
                    status_text.text("Generating Tamil audio...")
                    final_audio = AudioSegment.empty()
                    
                    for i, segment in enumerate(segments):
                        # Translate to Tamil
                        tamil_text = dubber.translate_to_tamil(segment["text"])
                        
                        # Generate Tamil audio
                        segment_audio = dubber.generate_tamil_audio(
                            tamil_text,
                            TAMIL_VOICES[selected_voice],
                            segment["emotion"] if emotion_detection else 'neutral'
                        )
                        
                        # Apply audio enhancements
                        if adjust_audio:
                            segment_audio = TamilAudioProcessor.adjust_tamil_audio(
                                segment_audio)
                        
                        # Add to final audio
                        if len(final_audio) < segment["start"] * 1000:
                            silence_duration = (segment["start"] * 1000 - 
                                len(final_audio))
                            final_audio += AudioSegment.silent(
                                duration=silence_duration)
                        
                        final_audio += segment_audio
                        
                        # Update progress
                        progress_bar.progress(0.25 + (0.5 * (i + 1) / 
                            len(segments)))

                    # Generate final video with subtitles
                    status_text.text("Creating final video...")
                    output_path = dubber.create_temp_file(".mp4")
                    
                    video = VideoFileClip(temp_video_path)
                    video = video.set_audio(AudioFileClip(final_audio))
                    
                    if generate_subtitles:
                        # Add Tamil subtitles
                        subtitle_clips = []
                        for segment in segments:
                            tamil_text = dubber.translate_to_tamil(segment["text"])
                            subtitle_clip = TextClip(
                                tamil_text,
                                fontsize=24,
                                font=selected_font,
                                color='white',
                                stroke_color='black',
                                stroke_width=1
                            )
                            subtitle_clip = subtitle_clip.set_position(
                                ('center', 'bottom')
                            ).set_duration(
                                segment["end"] - segment["start"]
                            ).set_start(segment["start"])
                            subtitle_clips.append(subtitle_clip)
                        
                        video = CompositeVideoClip([video] + subtitle_clips)

                    # Write final video
                    video.write_videofile(output_path, codec='libx264', 
                        audio_codec='aac')
                    progress_bar.progress(1.0)

                    # Display result
                    st.success("Tamil dubbing completed!")
                    st.video(output_path)
                    
                    # Provide download button
                    with open(output_path, "rb") as f:
                        st.download_button(
                            "Download Tamil Dubbed Video",
                            f,
                            file_name="tamil_dubbed_video.mp4"
                        )

            except Exception as e:
                st.error(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    main()