Aita / app.py
Artificial-superintelligence's picture
Update app.py
19707c5 verified
raw
history blame
4.9 kB
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip
import whisper
from translate import Translator
from gtts import gTTS
import tempfile
import os
import numpy as np
# Initialize Whisper model
try:
whisper_model = whisper.load_model("base")
except Exception as e:
st.error(f"Error loading Whisper model: {e}")
# Language options
LANGUAGES = {
'English': 'en',
'Tamil': 'ta',
'Sinhala': 'si',
'French': 'fr', # Add more languages as needed
}
st.title("AI Video Translator with Whisper and GTTS")
# Step 1: Upload video file
video_file = st.file_uploader("Upload a video file", type=["mp4", "mov", "avi", "mkv"])
if video_file:
# Step 2: Select translation language
target_language = st.selectbox("Select the target language for translation", list(LANGUAGES.keys()))
# Process when user clicks translate
if st.button("Translate Video"):
# Save video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video:
temp_video.write(video_file.read())
temp_video_path = temp_video.name
# Extract audio from video
try:
video = VideoFileClip(temp_video_path)
audio_path = tempfile.mktemp(suffix=".wav")
video.audio.write_audiofile(audio_path)
except Exception as e:
st.error(f"Error extracting audio from video: {e}")
os.remove(temp_video_path)
st.stop()
# Function to transcribe audio in chunks
def transcribe_audio_in_chunks(audio_path, model, chunk_length=30):
audio_clip = whisper.load_audio(audio_path)
audio_duration = len(audio_clip) / whisper.audio.SAMPLE_RATE # Calculate duration in seconds
segments = []
for start in np.arange(0, audio_duration, chunk_length):
end = min(start + chunk_length, audio_duration)
segment = audio_clip[int(start * whisper.audio.SAMPLE_RATE):int(end * whisper.audio.SAMPLE_RATE)]
result = model.transcribe(segment)
segments.append(result['text'])
return ' '.join(segments)
# Function to translate text in chunks
def translate_in_chunks(text, translator, max_length=500):
words = text.split()
chunks = []
current_chunk = ""
for word in words:
if len(current_chunk) + len(word) + 1 <= max_length:
current_chunk += " " + word if current_chunk else word
else:
chunks.append(current_chunk)
current_chunk = word
if current_chunk:
chunks.append(current_chunk)
translated_chunks = [translator.translate(chunk) for chunk in chunks]
return ' '.join(translated_chunks)
# Transcribe audio using Whisper
try:
original_text = transcribe_audio_in_chunks(audio_path, whisper_model)
st.write("Original Transcription:", original_text)
# Translate text to the target language
translator = Translator(to_lang=LANGUAGES[target_language])
translated_text = translate_in_chunks(original_text, translator)
st.write(f"Translated Text ({target_language}):", translated_text)
# Convert translated text to speech
tts = gTTS(text=translated_text, lang=LANGUAGES[target_language])
translated_audio_path = tempfile.mktemp(suffix=".mp3")
tts.save(translated_audio_path)
# Merge translated audio with the original video
final_video_path = tempfile.mktemp(suffix=".mp4")
original_video = VideoFileClip(temp_video_path)
translated_audio = AudioFileClip(translated_audio_path)
final_video = original_video.set_audio(translated_audio)
final_video.write_videofile(final_video_path, codec='libx264', audio_codec='aac')
# Display success message and provide download link
st.success("Translation successful! Download your translated video below:")
st.video(final_video_path)
# Provide download link
with open(final_video_path, "rb") as f:
st.download_button("Download Translated Video", f, file_name="translated_video.mp4")
except Exception as e:
st.error(f"Error during transcription/translation: {e}")
translated_audio_path = None # Ensure this variable is defined
# Clean up temporary files
os.remove(temp_video_path)
os.remove(audio_path)
if translated_audio_path: # Only remove if it was created
os.remove(translated_audio_path)
if final_video_path: # Only remove if it was created
os.remove(final_video_path)