Aita / app.py
Artificial-superintelligence's picture
Update app.py
8d4309d verified
raw
history blame
10.1 kB
import streamlit as st
from moviepy.editor import VideoFileClip, AudioFileClip, TextClip, CompositeVideoClip
import whisper
from translate import Translator
from gtts import gTTS
import tempfile
import os
import numpy as np
from datetime import timedelta
import json
from indic_transliteration import sanscript
from indic_transliteration.sanscript import transliterate
import azure.cognitiveservices.speech as speechsdk
import ffmpeg
# Set page configuration
st.set_page_config(
page_title="translate",
page_icon="🎬",
layout="wide"
)
# Custom CSS to improve the interface
st.markdown("""
<style>
.stButton>button {
width: 100%;
border-radius: 5px;
height: 3em;
background-color: #FF4B4B;
color: white;
}
.stProgress .st-bo {
background-color: #FF4B4B;
}
</style>
""", unsafe_allow_html=True)
# Tamil-specific voice configurations
TAMIL_VOICES = {
'Female 1': {'name': 'ta-IN-PallaviNeural', 'style': 'normal'},
'Female 2': {'name': 'ta-IN-PallaviNeural', 'style': 'formal'},
'Male 1': {'name': 'ta-IN-ValluvarNeural', 'style': 'normal'},
'Male 2': {'name': 'ta-IN-ValluvarNeural', 'style': 'formal'}
}
class TamilTextProcessor:
@staticmethod
def normalize_tamil_text(text):
"""Normalize Tamil text for better pronunciation"""
tamil_numerals = {'௦': '0', '௧': '1', '௨': '2', '௩': '3', '௪': '4',
'௫': '5', '௬': '6', '௭': '7', '௮': '8', '௯': '9'}
for tamil_num, eng_num in tamil_numerals.items():
text = text.replace(tamil_num, eng_num)
return text
@staticmethod
def process_for_tts(text):
"""Process Tamil text for TTS"""
text = ''.join(char for char in text if ord(char) < 65535)
text = ' '.join(text.split())
return text
@st.cache_resource
def load_whisper_model():
"""Load Whisper model with caching"""
return whisper.load_model("base")
class TamilDubber:
def __init__(self):
self.whisper_model = load_whisper_model()
self.temp_dir = tempfile.mkdtemp()
def create_temp_file(self, suffix):
"""Create a temporary file in the temp directory"""
return os.path.join(self.temp_dir, f"temp_{os.urandom(8).hex()}{suffix}")
def cleanup(self):
"""Clean up temporary files"""
import shutil
try:
shutil.rmtree(self.temp_dir)
except Exception as e:
st.warning(f"Cleanup warning: {e}")
def extract_audio(self, video_path):
"""Extract audio and transcribe using Whisper"""
try:
video = VideoFileClip(video_path)
audio_path = self.create_temp_file(".wav")
video.audio.write_audiofile(audio_path, fps=16000)
# Transcribe using Whisper
result = self.whisper_model.transcribe(audio_path)
return result["segments"], video.duration
except Exception as e:
st.error(f"Error in audio extraction: {e}")
raise
def translate_segments(self, segments):
"""Translate segments to Tamil"""
translator = Translator(to_lang='ta')
translated_segments = []
for segment in segments:
try:
translated_text = translator.translate(segment["text"])
translated_text = TamilTextProcessor.normalize_tamil_text(translated_text)
translated_text = TamilTextProcessor.process_for_tts(translated_text)
translated_segments.append({
"text": translated_text,
"start": segment["start"],
"end": segment["end"],
"duration": segment["end"] - segment["start"]
})
except Exception as e:
st.warning(f"Translation warning for segment: {str(e)}")
# Keep original text if translation fails
translated_segments.append({
"text": segment["text"],
"start": segment["start"],
"end": segment["end"],
"duration": segment["end"] - segment["start"]
})
return translated_segments
def generate_audio(self, text, voice_style="normal"):
"""Generate Tamil audio using gTTS"""
try:
temp_path = self.create_temp_file(".mp3")
tts = gTTS(text=text, lang='ta', slow=False)
tts.save(temp_path)
return temp_path
except Exception as e:
st.error(f"Error in audio generation: {e}")
raise
def create_subtitles(self, segments, output_path):
"""Generate SRT subtitles"""
try:
with open(output_path, 'w', encoding='utf-8') as f:
for idx, segment in enumerate(segments, 1):
start_time = str(timedelta(seconds=int(segment["start"])))
end_time = str(timedelta(seconds=int(segment["end"])))
f.write(f"{idx}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{segment['text']}\n\n")
except Exception as e:
st.error(f"Error creating subtitles: {e}")
raise
def main():
st.title("Tamil Movie Dubbing System")
st.markdown("""
👋 Welcome to the Tamil Movie Dubbing System! This tool helps you:
- 🎥 Convert English videos to Tamil
- 🗣️ Generate Tamil voiceovers
- 📝 Add Tamil subtitles
""")
st.sidebar.header("டப்பிங் அமைப்புகள்") # Dubbing Settings in Tamil
# File uploader with clear instructions
st.info("Please upload a video file (MP4, MOV, or AVI format)")
video_file = st.file_uploader("Upload Video File", type=['mp4', 'mov', 'avi'])
if not video_file:
st.warning("Please upload a video to begin the dubbing process.")
return
# Settings in sidebar
with st.sidebar:
st.subheader("Voice Settings")
voice_type = st.selectbox("Select Voice", list(TAMIL_VOICES.keys()))
st.subheader("Subtitle Settings")
generate_subtitles = st.checkbox("Generate Tamil Subtitles", value=True)
if generate_subtitles:
subtitle_size = st.slider("Subtitle Size", 16, 32, 24)
subtitle_color = st.color_picker("Subtitle Color", "#FFFFFF")
# Main process
if st.button("Start Tamil Dubbing"):
try:
dubber = TamilDubber()
# Create progress containers
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Save uploaded video
temp_video_path = dubber.create_temp_file(".mp4")
with open(temp_video_path, "wb") as f:
f.write(video_file.read())
# Extract audio and transcribe
status_text.text("📥 Extracting audio and transcribing...")
segments, video_duration = dubber.extract_audio(temp_video_path)
progress_bar.progress(0.25)
# Translate segments
status_text.text("🔄 Translating to Tamil...")
translated_segments = dubber.translate_segments(segments)
progress_bar.progress(0.50)
# Generate Tamil audio
status_text.text("🔊 Generating Tamil audio...")
video = VideoFileClip(temp_video_path)
audio_segments = []
for idx, segment in enumerate(translated_segments):
audio_path = dubber.generate_audio(segment["text"])
audio_segments.append({
"audio": AudioFileClip(audio_path),
"start": segment["start"]
})
progress_bar.progress(0.50 + (0.25 * (idx + 1) / len(translated_segments)))
# Create final video
status_text.text("🎬 Creating final video...")
output_path = dubber.create_temp_file(".mp4")
# Add subtitles if enabled
if generate_subtitles:
srt_path = dubber.create_temp_file(".srt")
dubber.create_subtitles(translated_segments, srt_path)
# Use ffmpeg to add subtitles
stream = ffmpeg.input(temp_video_path)
stream = ffmpeg.output(stream, output_path,
vf=f'subtitles={srt_path}:force_style=\'FontSize={subtitle_size},PrimaryColour={subtitle_color}\'',
acodec='aac')
ffmpeg.run(stream, overwrite_output=True)
else:
# Just copy the video if no subtitles
video.write_videofile(output_path)
progress_bar.progress(1.0)
status_text.text("✅ Dubbing completed!")
# Display result
st.success("டப்பிங் வெற்றிகரமாக முடிந்தது!") # Dubbing completed successfully in Tamil
st.video(output_path)
# Download button
with open(output_path, "rb") as f:
st.download_button(
"⬇️ Download Dubbed Video",
f,
file_name="tamil_dubbed_video.mp4",
mime="video/mp4"
)
finally:
# Cleanup
dubber.cleanup()
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.error("Please try again with a different video or check if the video format is supported.")
if __name__ == "__main__":
main()