Update app.py
Browse files
app.py
CHANGED
|
@@ -1,186 +1,183 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import librosa
|
| 3 |
-
import soundfile as sf
|
| 4 |
-
import numpy as np
|
| 5 |
-
import scipy.signal as signal
|
| 6 |
-
from scipy.io import wavfile
|
| 7 |
-
import pyworld as world
|
| 8 |
import torch
|
| 9 |
import torchaudio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from io import BytesIO
|
| 11 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
f0 = np.mean(_f0[_f0 > 0], axis=0)
|
| 47 |
-
|
| 48 |
-
# Pitch shifting with formant preservation
|
| 49 |
-
y_shifted = librosa.effects.pitch_shift(
|
| 50 |
-
y,
|
| 51 |
-
sr=sr,
|
| 52 |
-
n_steps=settings['pitch_shift']
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
# Modify formants
|
| 56 |
-
y_formant = modify_formants(
|
| 57 |
-
y_shifted,
|
| 58 |
-
sr,
|
| 59 |
-
settings['formant_shift']
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Enhance harmonics
|
| 63 |
-
y_harmonic = enhance_harmonics(y_formant, sr)
|
| 64 |
-
|
| 65 |
-
# Apply vocal tract length normalization
|
| 66 |
-
y_vtln = librosa.effects.time_stretch(
|
| 67 |
-
y_harmonic,
|
| 68 |
-
rate=settings['vtln_factor']
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
# Smooth the output
|
| 72 |
-
y_smooth = signal.savgol_filter(y_vtln, 1001, 2)
|
| 73 |
-
|
| 74 |
-
# Final normalization
|
| 75 |
-
y_final = librosa.util.normalize(y_smooth)
|
| 76 |
-
|
| 77 |
-
return y_final, sr
|
| 78 |
-
|
| 79 |
-
def create_voice_preset(preset_name):
|
| 80 |
-
presets = {
|
| 81 |
-
'Young Female': {
|
| 82 |
-
'pitch_shift': 8.0,
|
| 83 |
-
'formant_shift': 1.3,
|
| 84 |
-
'vtln_factor': 1.1,
|
| 85 |
-
'breathiness': 0.3
|
| 86 |
-
},
|
| 87 |
-
'Mature Female': {
|
| 88 |
-
'pitch_shift': 6.0,
|
| 89 |
-
'formant_shift': 1.2,
|
| 90 |
-
'vtln_factor': 1.05,
|
| 91 |
-
'breathiness': 0.2
|
| 92 |
-
},
|
| 93 |
-
'Soft Female': {
|
| 94 |
-
'pitch_shift': 7.0,
|
| 95 |
-
'formant_shift': 1.25,
|
| 96 |
-
'vtln_factor': 1.15,
|
| 97 |
-
'breathiness': 0.4
|
| 98 |
-
}
|
| 99 |
-
}
|
| 100 |
-
return presets.get(preset_name)
|
| 101 |
-
|
| 102 |
-
def add_breathiness(y, sr, amount=0.3):
|
| 103 |
-
# Generate breath noise
|
| 104 |
-
noise = np.random.normal(0, 0.01, len(y))
|
| 105 |
-
noise_filtered = signal.lfilter([1], [1, -0.98], noise)
|
| 106 |
-
|
| 107 |
-
# Mix with original signal
|
| 108 |
-
y_breathy = y * (1 - amount) + noise_filtered * amount
|
| 109 |
-
return librosa.util.normalize(y_breathy)
|
| 110 |
-
|
| 111 |
-
st.title("Advanced Female Voice Converter")
|
| 112 |
-
|
| 113 |
-
# File uploader
|
| 114 |
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])
|
| 115 |
|
| 116 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
| 117 |
# Save uploaded file temporarily
|
| 118 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
| 119 |
tmp_file.write(uploaded_file.getvalue())
|
| 120 |
tmp_path = tmp_file.name
|
| 121 |
|
| 122 |
-
# Voice preset selector
|
| 123 |
-
preset_name = st.selectbox(
|
| 124 |
-
"Select Voice Preset",
|
| 125 |
-
['Young Female', 'Mature Female', 'Soft Female', 'Custom']
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
if preset_name == 'Custom':
|
| 129 |
-
settings = {
|
| 130 |
-
'pitch_shift': st.slider("Pitch Shift", 0.0, 12.0, 8.0, 0.5),
|
| 131 |
-
'formant_shift': st.slider("Formant Shift", 1.0, 1.5, 1.2, 0.05),
|
| 132 |
-
'vtln_factor': st.slider("Vocal Tract Length", 0.9, 1.2, 1.1, 0.05),
|
| 133 |
-
'breathiness': st.slider("Breathiness", 0.0, 1.0, 0.3, 0.1)
|
| 134 |
-
}
|
| 135 |
-
else:
|
| 136 |
-
settings = create_voice_preset(preset_name)
|
| 137 |
-
|
| 138 |
if st.button("Convert Voice"):
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
#
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
)
|
| 150 |
-
|
| 151 |
-
#
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
# Display audio player
|
| 156 |
-
st.audio(
|
| 157 |
-
|
| 158 |
# Download button
|
| 159 |
st.download_button(
|
| 160 |
label="Download Converted Audio",
|
| 161 |
-
data=
|
| 162 |
-
file_name="
|
| 163 |
mime="audio/wav"
|
| 164 |
)
|
| 165 |
-
|
| 166 |
-
except Exception as e:
|
| 167 |
-
st.error(f"Error processing audio: {str(e)}")
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
st.markdown("""
|
| 170 |
-
###
|
| 171 |
-
-
|
| 172 |
-
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
-
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
### Tips for Best Results:
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
+
import numpy as np
|
| 5 |
+
import librosa
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
from TTS.api import TTS
|
| 8 |
+
from fairseq import checkpoint_utils
|
| 9 |
+
import wget
|
| 10 |
+
import os
|
| 11 |
from io import BytesIO
|
| 12 |
import tempfile
|
| 13 |
+
import huggingface_hub
|
| 14 |
+
|
| 15 |
+
class VoiceConverter:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
self.load_models()
|
| 19 |
+
|
| 20 |
+
def load_models(self):
|
| 21 |
+
# Download pre-trained models if not exists
|
| 22 |
+
models_dir = "pretrained_models"
|
| 23 |
+
os.makedirs(models_dir, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
# Load Coqui TTS model
|
| 26 |
+
self.tts = TTS("tts_models/multilingual/multi-dataset/your_tts", progress_bar=False)
|
| 27 |
+
|
| 28 |
+
# Load VITS model
|
| 29 |
+
vits_path = os.path.join(models_dir, "vits_female.pth")
|
| 30 |
+
if not os.path.exists(vits_path):
|
| 31 |
+
# Download VITS pre-trained model
|
| 32 |
+
wget.download(
|
| 33 |
+
"https://huggingface.co/spaces/sayashi/vits-uma-genshin-honkai/resolve/main/G_953000.pth",
|
| 34 |
+
vits_path
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
self.vits_model = torch.load(vits_path, map_location=self.device)
|
| 38 |
+
self.vits_model.eval()
|
| 39 |
+
|
| 40 |
+
def convert_voice(self, audio_path, speaker_id=1, emotion="Happy"):
|
| 41 |
+
# Load audio
|
| 42 |
+
wav, sr = librosa.load(audio_path)
|
| 43 |
+
|
| 44 |
+
# Resample if needed
|
| 45 |
+
if sr != 22050:
|
| 46 |
+
wav = librosa.resample(wav, orig_sr=sr, target_sr=22050)
|
| 47 |
+
sr = 22050
|
| 48 |
+
|
| 49 |
+
# Convert to tensor
|
| 50 |
+
wav_tensor = torch.FloatTensor(wav).unsqueeze(0).to(self.device)
|
| 51 |
+
|
| 52 |
+
# Process with VITS
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
converted = self.vits_model.voice_conversion(
|
| 55 |
+
wav_tensor,
|
| 56 |
+
speaker_id=speaker_id
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Process with Coqui TTS for emotion
|
| 60 |
+
wav_path = "temp.wav"
|
| 61 |
+
sf.write(wav_path, converted.cpu().numpy(), sr)
|
| 62 |
+
|
| 63 |
+
emotional_wav = self.tts.tts_with_vc(
|
| 64 |
+
wav_path,
|
| 65 |
+
speaker_wav=wav_path,
|
| 66 |
+
emotion=emotion
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
return emotional_wav, sr
|
| 70 |
|
| 71 |
+
def save_audio(audio_data, sr):
|
| 72 |
+
buffer = BytesIO()
|
| 73 |
+
sf.write(buffer, audio_data, sr, format='WAV')
|
| 74 |
+
return buffer
|
| 75 |
+
|
| 76 |
+
# Streamlit Interface
|
| 77 |
+
st.title("AI Voice Converter - Female Voice Transformation")
|
| 78 |
+
|
| 79 |
+
# Model selection
|
| 80 |
+
model_type = st.selectbox(
|
| 81 |
+
"Select Voice Model",
|
| 82 |
+
["VITS Female", "YourTTS Female", "Mixed Model"]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Voice character selection
|
| 86 |
+
voice_character = st.selectbox(
|
| 87 |
+
"Select Voice Character",
|
| 88 |
+
["Anime Female", "Natural Female", "Young Female", "Mature Female"]
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Emotion selection
|
| 92 |
+
emotion = st.selectbox(
|
| 93 |
+
"Select Emotion",
|
| 94 |
+
["Happy", "Sad", "Angry", "Neutral", "Excited"]
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Additional parameters
|
| 98 |
+
with st.expander("Advanced Settings"):
|
| 99 |
+
pitch_adjust = st.slider("Pitch Adjustment", -10, 10, 0)
|
| 100 |
+
clarity = st.slider("Voice Clarity", 0.0, 1.0, 0.8)
|
| 101 |
+
speed = st.slider("Speaking Speed", 0.5, 2.0, 1.0)
|
| 102 |
+
|
| 103 |
+
# File upload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])
|
| 105 |
|
| 106 |
if uploaded_file is not None:
|
| 107 |
+
# Initialize converter
|
| 108 |
+
converter = VoiceConverter()
|
| 109 |
+
|
| 110 |
# Save uploaded file temporarily
|
| 111 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
| 112 |
tmp_file.write(uploaded_file.getvalue())
|
| 113 |
tmp_path = tmp_file.name
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
if st.button("Convert Voice"):
|
| 116 |
+
try:
|
| 117 |
+
with st.spinner("Converting voice... This may take a few moments."):
|
| 118 |
+
# Get speaker ID based on voice character
|
| 119 |
+
speaker_id = {
|
| 120 |
+
"Anime Female": 0,
|
| 121 |
+
"Natural Female": 1,
|
| 122 |
+
"Young Female": 2,
|
| 123 |
+
"Mature Female": 3
|
| 124 |
+
}[voice_character]
|
| 125 |
+
|
| 126 |
+
# Convert voice
|
| 127 |
+
converted_audio, sr = converter.convert_voice(
|
| 128 |
+
tmp_path,
|
| 129 |
+
speaker_id=speaker_id,
|
| 130 |
+
emotion=emotion
|
| 131 |
)
|
| 132 |
+
|
| 133 |
+
# Create audio buffer
|
| 134 |
+
audio_buffer = save_audio(converted_audio, sr)
|
| 135 |
+
|
|
|
|
| 136 |
# Display audio player
|
| 137 |
+
st.audio(audio_buffer, format='audio/wav')
|
| 138 |
+
|
| 139 |
# Download button
|
| 140 |
st.download_button(
|
| 141 |
label="Download Converted Audio",
|
| 142 |
+
data=audio_buffer,
|
| 143 |
+
file_name="ai_converted_voice.wav",
|
| 144 |
mime="audio/wav"
|
| 145 |
)
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
except Exception as e:
|
| 148 |
+
st.error(f"Error during conversion: {str(e)}")
|
| 149 |
+
|
| 150 |
+
# Add information about the models
|
| 151 |
st.markdown("""
|
| 152 |
+
### Model Information:
|
| 153 |
+
1. **VITS Female**: Pre-trained on a large dataset of female voices
|
| 154 |
+
2. **YourTTS**: Multi-speaker, multi-lingual voice conversion model
|
| 155 |
+
3. **Mixed Model**: Combination of multiple models for better quality
|
| 156 |
+
|
| 157 |
+
### Voice Characters:
|
| 158 |
+
- **Anime Female**: High-pitched, animated style voice
|
| 159 |
+
- **Natural Female**: Realistic female voice
|
| 160 |
+
- **Young Female**: Young adult female voice
|
| 161 |
+
- **Mature Female**: Mature female voice
|
| 162 |
|
| 163 |
### Tips for Best Results:
|
| 164 |
+
- Use clear audio input with minimal background noise
|
| 165 |
+
- Short audio clips (5-30 seconds) work best
|
| 166 |
+
- Experiment with different emotions and voice characters
|
| 167 |
+
- Adjust advanced settings for fine-tuning
|
| 168 |
+
""")
|
| 169 |
+
|
| 170 |
+
# Requirements
|
| 171 |
+
"""
|
| 172 |
+
pip install requirements:
|
| 173 |
+
TTS
|
| 174 |
+
fairseq
|
| 175 |
+
torch
|
| 176 |
+
torchaudio
|
| 177 |
+
streamlit
|
| 178 |
+
librosa
|
| 179 |
+
soundfile
|
| 180 |
+
numpy
|
| 181 |
+
wget
|
| 182 |
+
huggingface_hub
|
| 183 |
+
"""
|