File size: 9,196 Bytes
f8dbf90
 
1b83088
98e1f97
1b83088
00814c9
4bf76df
 
00814c9
 
 
 
 
 
 
 
 
d4a5735
00814c9
f8dbf90
1b83088
 
3134b3b
1b83088
f8dbf90
00814c9
 
 
 
f8dbf90
 
 
e705807
f8dbf90
3134b3b
00814c9
 
1b83088
f8dbf90
cba9efc
f8dbf90
00814c9
 
9f8e60f
 
 
 
00814c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9dc4d
00814c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8639b
00814c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a5735
 
00814c9
d4a5735
 
 
00814c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff1791
 
75b06d3
 
00814c9
 
d4a5735
00814c9
d4a5735
00814c9
d35faf8
00814c9
83ac817
00814c9
 
 
 
 
 
ae1ac19
00814c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1447e0
d35faf8
990d424
00814c9
d35faf8
75b06d3
 
00814c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
from sympy import symbols, Eq, solve
from scipy.optimize import minimize
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])

# Create the model with optimized parameters and enhanced system instructions
generation_config = {
    "temperature": 0.6,  # Lower temperature for more deterministic responses
    "top_p": 0.8,        # Adjusted for better diversity
    "top_k": 30,         # Increased for more diverse tokens
    "max_output_tokens": 16384,  # Increased for longer responses
}

model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    system_instruction="""
    You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI. 
    Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
    """
)
chat_session = model.start_chat(history=[])

def generate_response(user_input):
    """Generate a response from the AI model."""
    try:
        response = chat_session.send_message(user_input)
        return response.text
    except Exception as e:
        return f"Error: {e}"

def optimize_code(code):
    """Optimize the generated code using static analysis tools."""
    with open("temp_code.py", "w") as file:
        file.write(code)
    result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
    os.remove("temp_code.py")
    return code

def fetch_from_github(query):
    """Fetch code snippets from GitHub."""
    # Placeholder for fetching code snippets from GitHub
    return ""

def interact_with_api(api_url):
    """Interact with external APIs."""
    response = requests.get(api_url)
    return response.json()

def train_ml_model(code_data):
    """Train a machine learning model to predict code improvements."""
    df = pd.DataFrame(code_data)
    X = df.drop('target', axis=1)
    y = df['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    model = RandomForestClassifier()
    model.fit(X_train, y_train)
    return model

def handle_error(error):
    """Handle errors and log them."""
    st.error(f"An error occurred: {error}")

def initialize_git_repo(repo_path):
    """Initialize or check the existence of a Git repository."""
    if not os.path.exists(repo_path):
        os.makedirs(repo_path)
    if not os.path.exists(os.path.join(repo_path, '.git')):
        repo = git.Repo.init(repo_path)
    else:
        repo = git.Repo(repo_path)
    return repo

def integrate_with_git(repo_path, code):
    """Integrate the generated code with a Git repository."""
    repo = initialize_git_repo(repo_path)
    with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
        file.write(code)
    repo.index.add(["generated_code.py"])
    repo.index.commit("Added generated code")

def process_user_input(user_input):
    """Process user input using advanced natural language processing."""
    nlp = English()
    doc = nlp(user_input)
    return doc

def interact_with_cloud_services(service_name, action, params):
    """Interact with cloud services using boto3."""
    client = boto3.client(service_name)
    response = getattr(client, action)(**params)
    return response

def run_tests():
    """Run automated tests using unittest."""
    # Ensure the tests directory is importable
    tests_dir = os.path.join(os.getcwd(), 'tests')
    if not os.path.exists(tests_dir):
        os.makedirs(tests_dir)
    init_file = os.path.join(tests_dir, '__init__.py')
    if not os.path.exists(init_file):
        with open(init_file, 'w') as f:
            f.write('')
    
    test_suite = unittest.TestLoader().discover(tests_dir)
    test_runner = unittest.TextTestRunner()
    test_result = test_runner.run(test_suite)
    return test_result

def solve_equation(equation):
    """Solve mathematical equations using SymPy."""
    x, y = symbols('x y')
    eq = Eq(eval(equation))
    solution = solve(eq, x)
    return solution

def optimize_function(function, initial_guess):
    """Optimize a function using SciPy."""
    result = minimize(lambda x: eval(function), initial_guess)
    return result.x

def visualize_data(data):
    """Visualize data using Matplotlib and Seaborn."""
    df = pd.DataFrame(data)
    plt.figure(figsize=(10, 6))
    sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
    plt.title('Correlation Heatmap')
    plt.show()

# Streamlit UI setup
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="💻", layout="wide")

st.markdown("""
<style>
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
    
    body {
        font-family: 'Inter', sans-serif;
        background-color: #f0f4f8;
        color: #1a202c;
    }
    .stApp {
        max-width: 1000px;
        margin: 0 auto;
        padding: 2rem;
    }
    .main-container {
        background: #ffffff;
        border-radius: 16px;
        padding: 2rem;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
    }
    h1 {
        font-size: 2.5rem;
        font-weight: 700;
        color: #2d3748;
        text-align: center;
        margin-bottom: 1rem;
    }
    .subtitle {
        font-size: 1.1rem;
        text-align: center;
        color: #4a5568;
        margin-bottom: 2rem;
    }
    .stTextArea textarea {
        border: 2px solid #e2e8f0;
        border-radius: 8px;
        font-size: 1rem;
        padding: 0.75rem;
        transition: all 0.3s ease;
    }
    .stTextArea textarea:focus {
        border-color: #4299e1;
        box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
    }
    .stButton button {
        background-color: #4299e1;
        color: white;
        border: none;
        border-radius: 8px;
        font-size: 1.1rem;
        font-weight: 600;
        padding: 0.75rem 2rem;
        transition: all 0.3s ease;
        width: 100%;
    }
    .stButton button:hover {
        background-color: #3182ce;
    }
    .output-container {
        background: #f7fafc;
        border-radius: 8px;
        padding: 1rem;
        margin-top: 2rem;
    }
    .code-block {
        background-color: #2d3748;
        color: #e2e8f0;
        font-family: 'Fira Code', monospace;
        font-size: 0.9rem;
        border-radius: 8px;
        padding: 1rem;
        margin-top: 1rem;
        overflow-x: auto;
    }
    .stAlert {
        background-color: #ebf8ff;
        color: #2b6cb0;
        border-radius: 8px;
        border: none;
        padding: 0.75rem 1rem;
    }
    .stSpinner {
        color: #4299e1;
    }
</style>
""", unsafe_allow_html=True)

st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("💻 Sleek AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)

prompt = st.text_area("What code can I help you with today?", height=120)

if st.button("Generate Code"):
    if prompt.strip() == "":
        st.error("Please enter a valid prompt.")
    else:
        with st.spinner("Generating code..."):
            try:
                processed_input = process_user_input(prompt)
                completed_text = generate_response(processed_input.text)
                if "Error" in completed_text:
                    handle_error(completed_text)
                else:
                    optimized_code = optimize_code(completed_text)
                    st.success("Code generated and optimized successfully!")
                    
                    st.markdown('<div class="output-container">', unsafe_allow_html=True)
                    st.markdown('<div class="code-block">', unsafe_allow_html=True)
                    st.code(optimized_code)
                    st.markdown('</div>', unsafe_allow_html=True)
                    st.markdown('</div>', unsafe_allow_html=True)
                    
                    # Integrate with Git
                    repo_path = "./repo"  # Replace with your repository path
                    integrate_with_git(repo_path, optimized_code)
                    
                    # Run automated tests
                    test_result = run_tests()
                    if test_result.wasSuccessful():
                        st.success("All tests passed successfully!")
                    else:
                        st.error("Some tests failed. Please check the code.")
            except Exception as e:
                handle_error(e)

st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
    Created with ❤️ by Your Sleek AI Code Assistant
</div>
""", unsafe_allow_html=True)

st.markdown('</div>', unsafe_allow_html=True)