File size: 5,862 Bytes
f8dbf90
 
1b83088
98e1f97
1b83088
4bf76df
 
 
 
f8dbf90
1b83088
 
3134b3b
1b83088
f8dbf90
4bf76df
 
 
 
f8dbf90
 
 
e705807
f8dbf90
3134b3b
1b83088
4bf76df
1b83088
f8dbf90
cba9efc
f8dbf90
1b83088
9f8e60f
 
 
 
1b83088
3134b3b
1b83088
4bf76df
1b83088
4bf76df
1b83088
3134b3b
1b83088
 
 
 
3134b3b
4bf76df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3134b3b
1b83088
3134b3b
1b83088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b06d3
 
1b83088
 
838191d
1b83088
da7ac0b
990d424
d35faf8
1b83088
83ac817
1b83088
 
 
 
 
 
 
3134b3b
 
 
1b83088
3134b3b
f1447e0
 
d35faf8
990d424
1b83088
d35faf8
75b06d3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint.epylint as lint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])

# Create the model with optimized parameters and enhanced system instructions
generation_config = {
    "temperature": 0.6,  # Lower temperature for more deterministic responses
    "top_p": 0.8,        # Adjusted for better diversity
    "top_k": 30,         # Increased for more diverse tokens
    "max_output_tokens": 16384,  # Increased for longer responses
}

model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    system_instruction="""
    You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI. 
    Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
    """
)
chat_session = model.start_chat(history=[])

def generate_response(user_input):
    try:
        response = chat_session.send_message(user_input)
        return response.text
    except Exception as e:
        return f"Error: {e}"

def optimize_code(code):
    # Placeholder for advanced code optimization logic
    # This could involve using external tools or libraries for static analysis and optimization
    (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
    return code

def fetch_from_github(query):
    # Placeholder for fetching code snippets from GitHub
    # This could involve using the GitHub API to search for relevant code
    return ""

def interact_with_api(api_url):
    # Placeholder for interacting with external APIs
    response = requests.get(api_url)
    return response.json()

def train_ml_model(code_data):
    # Placeholder for training a machine learning model to predict code improvements
    df = pd.DataFrame(code_data)
    X = df.drop('target', axis=1)
    y = df['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    model = RandomForestClassifier()
    model.fit(X_train, y_train)
    return model

# Streamlit UI setup
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="💻", layout="wide")

st.markdown("""
<style>
    @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
    
    body {
        font-family: 'Inter', sans-serif;
        background-color: #f0f4f8;
        color: #1a202c;
    }
    .stApp {
        max-width: 1000px;
        margin: 0 auto;
        padding: 2rem;
    }
    .main-container {
        background: #ffffff;
        border-radius: 16px;
        padding: 2rem;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
    }
    h1 {
        font-size: 2.5rem;
        font-weight: 700;
        color: #2d3748;
        text-align: center;
        margin-bottom: 1rem;
    }
    .subtitle {
        font-size: 1.1rem;
        text-align: center;
        color: #4a5568;
        margin-bottom: 2rem;
    }
    .stTextArea textarea {
        border: 2px solid #e2e8f0;
        border-radius: 8px;
        font-size: 1rem;
        padding: 0.75rem;
        transition: all 0.3s ease;
    }
    .stTextArea textarea:focus {
        border-color: #4299e1;
        box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
    }
    .stButton button {
        background-color: #4299e1;
        color: white;
        border: none;
        border-radius: 8px;
        font-size: 1.1rem;
        font-weight: 600;
        padding: 0.75rem 2rem;
        transition: all 0.3s ease;
        width: 100%;
    }
    .stButton button:hover {
        background-color: #3182ce;
    }
    .output-container {
        background: #f7fafc;
        border-radius: 8px;
        padding: 1rem;
        margin-top: 2rem;
    }
    .code-block {
        background-color: #2d3748;
        color: #e2e8f0;
        font-family: 'Fira Code', monospace;
        font-size: 0.9rem;
        border-radius: 8px;
        padding: 1rem;
        margin-top: 1rem;
        overflow-x: auto;
    }
    .stAlert {
        background-color: #ebf8ff;
        color: #2b6cb0;
        border-radius: 8px;
        border: none;
        padding: 0.75rem 1rem;
    }
    .stSpinner {
        color: #4299e1;
    }
</style>
""", unsafe_allow_html=True)

st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("💻 Sleek AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)

prompt = st.text_area("What code can I help you with today?", height=120)

if st.button("Generate Code"):
    if prompt.strip() == "":
        st.error("Please enter a valid prompt.")
    else:
        with st.spinner("Generating code..."):
            completed_text = generate_response(prompt)
            if "Error" in completed_text:
                st.error(completed_text)
            else:
                optimized_code = optimize_code(completed_text)
                st.success("Code generated and optimized successfully!")
                
                st.markdown('<div class="output-container">', unsafe_allow_html=True)
                st.markdown('<div class="code-block">', unsafe_allow_html=True)
                st.code(optimized_code)
                st.markdown('</div>', unsafe_allow_html=True)
                st.markdown('</div>', unsafe_allow_html=True)

st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
    Created with ❤️ by Your Sleek AI Code Assistant
</div>
""", unsafe_allow_html=True)

st.markdown('</div>', unsafe_allow_html=True)