File size: 10,550 Bytes
f8dbf90 1b83088 98e1f97 1b83088 00814c9 4bf76df 00814c9 8c39446 00814c9 d4a5735 00814c9 8c39446 90eba29 f8dbf90 1b83088 3134b3b 1b83088 f8dbf90 8c39446 f8dbf90 90eba29 f8dbf90 3134b3b 8c39446 5dfad9b 1b83088 f8dbf90 cba9efc f8dbf90 90eba29 00814c9 90eba29 9f8e60f 00814c9 90eba29 00814c9 90eba29 00814c9 ca9dc4d 00814c9 90eba29 00814c9 90eba29 00814c9 90eba29 00814c9 ad8639b 00814c9 90eba29 8c39446 90eba29 8c39446 00814c9 8c39446 00814c9 d4a5735 8c39446 d4a5735 8c39446 d4a5735 00814c9 8c39446 00814c9 cff1791 75b06d3 8c39446 00814c9 d4a5735 00814c9 d4a5735 00814c9 d35faf8 00814c9 83ac817 00814c9 ae1ac19 90eba29 00814c9 90eba29 00814c9 90eba29 00814c9 8c39446 90eba29 8c39446 00814c9 f1447e0 d35faf8 990d424 8c39446 d35faf8 75b06d3 00814c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
import docker
import sympy as sp
from scipy.optimize import minimize
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display
from tenacity import retry, stop_after_attempt, wait_fixed
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.5, # Lower temperature for more deterministic responses
"top_p": 0.7, # Adjusted for better diversity
"top_k": 40, # Increased for more diverse tokens
"max_output_tokens": 2048, # Increased for longer responses
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly knowledgeable and advanced code assistant. Your responses are optimized for secure, high-quality, and cutting-edge code solutions.
Focus on generating code that is efficient, readable, and adheres to best practices. Ensure that the code is well-documented and includes error handling where necessary.
"""
)
chat_session = model.start_chat(history=[])
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def generate_response(user_input):
"""Generate a response from the AI model with retry mechanism."""
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error: {e}"
def optimize_code(code):
"""Optimize the generated code using static analysis tools."""
with open("temp_code.py", "w") as file:
file.write(code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return code
def fetch_from_github(query):
"""Fetch code snippets from GitHub."""
# Placeholder for fetching code snippets from GitHub
return ""
def interact_with_api(api_url):
"""Interact with external APIs."""
response = requests.get(api_url)
return response.json()
def train_ml_model(code_data):
"""Train a machine learning model to predict code improvements."""
df = pd.DataFrame(code_data)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier()
model.fit(X_train, y_train)
return model
def handle_error(error):
"""Handle errors and log them."""
st.error(f"An error occurred: {error}")
def initialize_git_repo(repo_path):
"""Initialize or check the existence of a Git repository."""
if not os.path.exists(repo_path):
os.makedirs(repo_path)
if not os.path.exists(os.path.join(repo_path, '.git')):
repo = git.Repo.init(repo_path)
else:
repo = git.Repo(repo_path)
return repo
def integrate_with_git(repo_path, code):
"""Integrate the generated code with a Git repository."""
repo = initialize_git_repo(repo_path)
with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
file.write(code)
repo.index.add(["generated_code.py"])
repo.index.commit("Added generated code")
def process_user_input(user_input):
"""Process user input using advanced natural language processing."""
nlp = English()
doc = nlp(user_input)
return doc
def interact_with_cloud_services(service_name, action, params):
"""Interact with cloud services using boto3."""
client = boto3.client(service_name)
response = getattr(client, action)(**params)
return response
def run_tests():
"""Run automated tests using unittest."""
tests_dir = os.path.join(os.getcwd(), 'tests')
if not os.path.exists(tests_dir):
os.makedirs(tests_dir)
init_file = os.path.join(tests_dir, '__init__.py')
if not os.path.exists(init_file):
with open(init_file, 'w') as f:
f.write('')
test_suite = unittest.TestLoader().discover(tests_dir)
test_runner = unittest.TextTestRunner()
test_result = test_runner.run(test_suite)
return test_result
def execute_code_in_docker(code):
"""Execute code in a Docker container for safety and isolation."""
client = docker.from_env()
try:
container = client.containers.run(
image="python:3.9",
command=f"python -c '{code}'",
detach=True,
remove=True
)
result = container.wait()
logs = container.logs().decode('utf-8')
return logs, result['StatusCode']
except Exception as e:
return f"Error: {e}", 1
def solve_equation(equation):
"""Solve mathematical equations using SymPy."""
x, y = sp.symbols('x y')
eq = sp.Eq(eval(equation))
solution = sp.solve(eq, x)
return solution
def optimize_function(function, initial_guess):
"""Optimize a function using SciPy."""
result = minimize(lambda x: eval(function), initial_guess)
return result.x
def visualize_data(data):
"""Visualize data using Matplotlib and Seaborn."""
df = pd.DataFrame(data)
plt.figure(figsize=(10, 6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
def analyze_data(data):
"""Perform advanced data analysis using Pandas and NumPy."""
df = pd.DataFrame(data)
summary = df.describe()
return summary
def display_dataframe(data):
"""Display a DataFrame in a user-friendly format."""
df = pd.DataFrame(data)
display(df)
# Streamlit UI setup
st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="π", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
body {
font-family: 'Inter', sans-serif;
background-color: #f0f4f8;
color: #1a202c;
}
.stApp {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
}
.main-container {
background: #ffffff;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
h1 {
font-size: 2.5rem;
font-weight: 700;
color: #2d3748;
text-align: center;
margin-bottom: 1rem;
}
.subtitle {
font-size: 1.1rem;
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
}
.stTextArea textarea {
border: 2px solid #e2e8f0;
border-radius: 8px;
font-size: 1rem;
padding: 0.75rem;
transition: all 0.3s ease;
}
.stTextArea textarea:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}
.stButton button {
background-color: #4299e1;
color: white;
border: none;
border-radius: 8px;
font-size: 1.1rem;
font-weight: 600;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
width: 100%;
}
.stButton button:hover {
background-color: #3182ce;
}
.output-container {
background: #f7fafc;
border-radius: 8px;
padding: 1rem;
margin-top: 2rem;
}
.code-block {
background-color: #2d3748;
color: #e2e8f0;
font-family: 'Fira Code', monospace;
font-size: 0.9rem;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
overflow-x: auto;
}
.stAlert {
background-color: #ebf8ff;
color: #2b6cb0;
border-radius: 8px;
border: none;
padding: 0.75rem 1rem;
}
.stSpinner {
color: #4299e1;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("π Ultra AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)
prompt = st.text_area("What code can I help you with today?", height=120)
if st.button("Generate Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating code..."):
try:
processed_input = process_user_input(prompt)
completed_text = generate_response(processed_input.text)
if "Error" in completed_text:
handle_error(completed_text)
else:
optimized_code = optimize_code(completed_text)
st.success("Code generated and optimized successfully!")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Integrate with Git
repo_path = "./repo" # Replace with your repository path
integrate_with_git(repo_path, optimized_code)
# Run automated tests
test_result = run_tests()
if test_result.wasSuccessful():
st.success("All tests passed successfully!")
else:
st.error("Some tests failed. Please check the code.")
# Execute code in Docker
execution_result, status_code = execute_code_in_docker(optimized_code)
if status_code == 0:
st.success("Code executed successfully in Docker!")
st.text(execution_result)
else:
st.error(f"Code execution failed: {execution_result}")
except Exception as e:
handle_error(e)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Created with β€οΈ by Your Ultra AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True) |